These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36130724)

  • 1. Transposons and CRISPR: Rewiring Gene Editing.
    Tenjo-Castaño F; Montoya G; Carabias A
    Biochemistry; 2023 Dec; 62(24):3521-3532. PubMed ID: 36130724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-guided genome engineering: paradigm shift towards transposons.
    Chang CW; Truong VA; Pham NN; Hu YC
    Trends Biotechnol; 2024 Aug; 42(8):970-985. PubMed ID: 38443218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases.
    Altae-Tran H; Kannan S; Demircioglu FE; Oshiro R; Nety SP; McKay LJ; Dlakić M; Inskeep WP; Makarova KS; Macrae RK; Koonin EV; Zhang F
    Science; 2021 Oct; 374(6563):57-65. PubMed ID: 34591643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse Class 2 CRISPR Effectors as Active Nucleases with Expanded Targeting Capabilities.
    Wang M; Rieber L; van Baaren J; Morgan M; Merrett S; McDowell I; Bowen T
    CRISPR J; 2024 Apr; 7(2):120-130. PubMed ID: 38635326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors.
    Xiang G; Li Y; Sun J; Huo Y; Cao S; Cao Y; Guo Y; Yang L; Cai Y; Zhang YE; Wang H
    Nat Biotechnol; 2024 May; 42(5):745-757. PubMed ID: 37386294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors.
    Chen W; Ma J; Wu Z; Wang Z; Zhang H; Fu W; Pan D; Shi J; Ji Q
    Mol Cell; 2023 Aug; 83(15):2768-2780.e6. PubMed ID: 37402371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent application of CRISPR-Cas12 and OMEGA system for genome editing.
    Badon IW; Oh Y; Kim HJ; Lee SH
    Mol Ther; 2024 Jan; 32(1):32-43. PubMed ID: 37952084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy.
    Zeballos C MA; Gaj T
    Trends Biotechnol; 2021 Jul; 39(7):692-705. PubMed ID: 33277043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing in plants using the TnpB transposase system.
    Li Q; Wang Y; Hou Z; Zong H; Wang X; Zhang YE; Wang H; Chen H; Wang W; Duan K
    aBIOTECH; 2024 Jun; 5(2):225-230. PubMed ID: 38974856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs.
    Kapitonov VV; Makarova KS; Koonin EV
    J Bacteriol; 2015 Dec; 198(5):797-807. PubMed ID: 26712934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system.
    Alalmaie A; Diaf S; Khashan R
    J Genet Eng Biotechnol; 2023 May; 21(1):60. PubMed ID: 37191877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria.
    Hsieh SC; Peters JE
    Nucleic Acids Res; 2023 Jan; 51(2):765-782. PubMed ID: 36537206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakthrough in CRISPR/Cas system: Current and future directions and challenges.
    Ali A; Zafar MM; Farooq Z; Ahmed SR; Ijaz A; Anwar Z; Abbas H; Tariq MS; Tariq H; Mustafa M; Bajwa MH; Shaukat F; Razzaq A; Maozhi R
    Biotechnol J; 2023 Aug; 18(8):e2200642. PubMed ID: 37166088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR beyond: harnessing compact RNA-guided endonucleases for enhanced genome editing.
    Wang F; Ma S; Zhang S; Ji Q; Hu C
    Sci China Life Sci; 2024 Jul; ():. PubMed ID: 39012436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of diverse type I-F CRISPR-associated transposons.
    Roberts A; Nethery MA; Barrangou R
    Nucleic Acids Res; 2022 Nov; 50(20):11670-11681. PubMed ID: 36384163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A beginner's guide to gene editing.
    Harrison PT; Hart S
    Exp Physiol; 2018 Apr; 103(4):439-448. PubMed ID: 29282799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in stem cells and gene editing: Drug discovery and therapeutics.
    Bayarsaikhan D; Bayarsaikhan G; Lee B
    Prog Mol Biol Transl Sci; 2021; 181():231-269. PubMed ID: 34127195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
    Anzalone AV; Koblan LW; Liu DR
    Nat Biotechnol; 2020 Jul; 38(7):824-844. PubMed ID: 32572269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.