BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36130730)

  • 21. Advanced sleep spindle identification with neural networks.
    Kaulen L; Schwabedal JTC; Schneider J; Ritter P; Bialonski S
    Sci Rep; 2022 May; 12(1):7686. PubMed ID: 35538137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffuse sleep spindles show similar frequency in central and frontopolar positions.
    Huupponen E; Kulkas A; Tenhunen M; Saastamoinen A; Hasan J; Himanen SL
    J Neurosci Methods; 2008 Jul; 172(1):54-9. PubMed ID: 18482770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sleep spindle and psychopathology characteristics of frequent nightmare recallers.
    Picard-Deland C; Carr M; Paquette T; Saint-Onge K; Nielsen T
    Sleep Med; 2018 Oct; 50():113-131. PubMed ID: 30031989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory stimulation triggers spindles during sleep stage 2.
    Sato Y; Fukuoka Y; Minamitani H; Honda K
    Sleep; 2007 Apr; 30(4):511-8. PubMed ID: 17520796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topographical relocation of adolescent sleep spindles reveals a new maturational pattern in the human brain.
    Gombos F; Bódizs R; Pótári A; Bocskai G; Berencsi A; Szakács H; Kovács I
    Sci Rep; 2022 Apr; 12(1):7023. PubMed ID: 35487959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Naps reliably estimate nocturnal sleep spindle density in health and schizophrenia.
    Mylonas D; Tocci C; Coon WG; Baran B; Kohnke EJ; Zhu L; Vangel MG; Stickgold R; Manoach DS
    J Sleep Res; 2020 Oct; 29(5):e12968. PubMed ID: 31860157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood.
    McClain IJ; Lustenberger C; Achermann P; Lassonde JM; Kurth S; LeBourgeois MK
    Neural Plast; 2016; 2016():3670951. PubMed ID: 27110405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An automatic sleep spindle detector based on wavelets and the teager energy operator.
    Ahmed B; Redissi A; Tafreshi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2596-9. PubMed ID: 19965220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spindles are highly heritable as identified by different spindle detectors.
    Goldschmied JR; Lacourse K; Maislin G; Delfrate J; Gehrman P; Pack FM; Staley B; Pack AI; Younes M; Kuna ST; Warby SC
    Sleep; 2021 Apr; 44(4):. PubMed ID: 33165618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG.
    Wei L; Ventura S; Lowery M; Ryan MA; Mathieson S; Boylan GB; Mooney C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():58-61. PubMed ID: 33017930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detecting alpha spindle events in EEG time series using adaptive autoregressive models.
    Lawhern V; Kerick S; Robbins KA
    BMC Neurosci; 2013 Sep; 14():101. PubMed ID: 24047117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization.
    Parekh A; Selesnick IW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2015 Aug; 251():37-46. PubMed ID: 25956566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Closed-Loop Direct Electrical Stimulation during Sleep Spindles in Humans.
    Krempp C; Paulk AC; Truccolo W; Cash SS; Zelmann R
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3586-3589. PubMed ID: 33018778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interrelations and functional roles of key oscillatory activities during daytime sleep in older adults.
    Wüst LN; Antonenko D; Malinowski R; Khakimova L; Grittner U; Obermayer K; Ladenbauer J; Flöel A
    J Sleep Res; 2024 May; 33(3):e13981. PubMed ID: 37488062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust two-stage sleep spindle detection approach using single-channel EEG.
    Jiang D; Ma Y; Wang Y
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326950
    [No Abstract]   [Full Text] [Related]  

  • 37. Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-Term Memory Generalization by Modulating Endogenous Oscillations.
    Ketz N; Jones AP; Bryant NB; Clark VP; Pilly PK
    J Neurosci; 2018 Aug; 38(33):7314-7326. PubMed ID: 30037830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The space-time profiles of sleep spindles and their coordination with slow oscillations on the electrode manifold.
    Malerba P; Whitehurst L; Mednick SC
    Sleep; 2022 Aug; 45(8):. PubMed ID: 35666552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validating an automated sleep spindle detection algorithm using an individualized approach.
    Ray LB; Fogel SM; Smith CT; Peters KR
    J Sleep Res; 2010 Jun; 19(2):374-8. PubMed ID: 20149067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sleep spindle characteristics in adolescents.
    Goldstone A; Willoughby AR; de Zambotti M; Clark DB; Sullivan EV; Hasler BP; Franzen PL; Prouty DE; Colrain IM; Baker FC
    Clin Neurophysiol; 2019 Jun; 130(6):893-902. PubMed ID: 30981174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.