These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36130864)

  • 21. Towards the Directed Evolution of Artificial Metalloenzymes.
    Vallapurackal J
    Chimia (Aarau); 2021 Apr; 75(4):257-260. PubMed ID: 33902791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting.
    Bernath K; Hai M; Mastrobattista E; Griffiths AD; Magdassi S; Tawfik DS
    Anal Biochem; 2004 Feb; 325(1):151-7. PubMed ID: 14715296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes.
    Abatemarco J; Sarhan MF; Wagner JM; Lin JL; Liu L; Hassouneh W; Yuan SF; Alper HS; Abate AR
    Nat Commun; 2017 Aug; 8(1):332. PubMed ID: 28835641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A flow cytometry-based screening system for directed evolution of proteases.
    Tu R; Martinez R; Prodanovic R; Klein M; Schwaneberg U
    J Biomol Screen; 2011 Mar; 16(3):285-94. PubMed ID: 21335599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Droplet Microfluidics for Microbial Biotechnology.
    Hengoju S; Tovar M; Man DKW; Buchheim S; Rosenbaum MA
    Adv Biochem Eng Biotechnol; 2022; 179():129-157. PubMed ID: 32888037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An improved single cell ultrahigh throughput screening method based on in vitro compartmentalization.
    Ma F; Xie Y; Huang C; Feng Y; Yang G
    PLoS One; 2014; 9(2):e89785. PubMed ID: 24587033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey.
    Stucki A; Vallapurackal J; Ward TR; Dittrich PS
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24368-24387. PubMed ID: 33539653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. μIVC-Seq: A Method for Ultrahigh-Throughput Development and Functional Characterization of Small RNAs.
    Bouhedda F; Cubi R; Baudrey S; Ryckelynck M
    Methods Mol Biol; 2021; 2300():203-237. PubMed ID: 33792882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments.
    Aharoni A; Amitai G; Bernath K; Magdassi S; Tawfik DS
    Chem Biol; 2005 Dec; 12(12):1281-9. PubMed ID: 16356845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular Unnatural Catalysis Enabled by an Artificial Metalloenzyme.
    Okamoto Y; Kojima R
    Methods Mol Biol; 2021; 2312():287-300. PubMed ID: 34228297
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Heinisch T; Schwizer F; Garabedian B; Csibra E; Jeschek M; Vallapurackal J; Pinheiro VB; Marlière P; Panke S; Ward TR
    Chem Sci; 2018 Jun; 9(24):5383-5388. PubMed ID: 30079176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions.
    Mastrobattista E; Taly V; Chanudet E; Treacy P; Kelly BT; Griffiths AD
    Chem Biol; 2005 Dec; 12(12):1291-300. PubMed ID: 16356846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution.
    Fallah-Araghi A; Baret JC; Ryckelynck M; Griffiths AD
    Lab Chip; 2012 Mar; 12(5):882-91. PubMed ID: 22277990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability.
    Calhoun SGK; Brower KK; Suja VC; Kim G; Wang N; McCully AL; Kusumaatmaja H; Fuller GG; Fordyce PM
    Lab Chip; 2022 Jun; 22(12):2315-2330. PubMed ID: 35593127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosensor-enabled droplet microfluidic system for the rapid screening of 3-dehydroshikimic acid produced in Escherichia coli.
    Tu R; Li L; Yuan H; He R; Wang Q
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1155-1160. PubMed ID: 32980986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics.
    Beneyton T; Coldren F; Baret JC; Griffiths AD; Taly V
    Analyst; 2014 Jul; 139(13):3314-23. PubMed ID: 24733162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simplified, Shear Induced Generation of Double Emulsions for Robust Compartmentalization during Single Genome Analysis.
    Cowell TW; Dobria A; Han HS
    ACS Appl Mater Interfaces; 2022 May; 14(18):20528-20537. PubMed ID: 35502700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.