These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 36130957)
1. Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA. Hu SS; Liu L; Li Q; Ma W; Guertin MJ; Meyer CA; Deng K; Zhang T; Zang C Nat Commun; 2022 Sep; 13(1):5533. PubMed ID: 36130957 [TBL] [Abstract][Full Text] [Related]
4. Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq datasets using protocol-specific bias modeling. Karabacak Calviello A; Hirsekorn A; Wurmus R; Yusuf D; Ohler U Genome Biol; 2019 Feb; 20(1):42. PubMed ID: 30791920 [TBL] [Abstract][Full Text] [Related]
5. Analytical Approaches for ATAC-seq Data Analysis. Smith JP; Sheffield NC Curr Protoc Hum Genet; 2020 Jun; 106(1):e101. PubMed ID: 32543102 [TBL] [Abstract][Full Text] [Related]
6. Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq. Zhou W; Ji Z; Fang W; Ji H Nucleic Acids Res; 2019 Nov; 47(19):e121. PubMed ID: 31428792 [TBL] [Abstract][Full Text] [Related]
7. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species. Huang L; Li X; Dong L; Wang B; Pan L BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759 [TBL] [Abstract][Full Text] [Related]
10. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq. Marinov GK; Shipony Z Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259 [TBL] [Abstract][Full Text] [Related]
11. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq. Grbesa I; Tannenbaum M; Sarusi-Portuguez A; Schwartz M; Hakim O J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155775 [TBL] [Abstract][Full Text] [Related]
12. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Kähärä J; Lähdesmäki H Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350 [TBL] [Abstract][Full Text] [Related]
13. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference. Pranzatelli TJF; Michael DG; Chiorini JA BMC Genomics; 2018 Jul; 19(1):563. PubMed ID: 30064353 [TBL] [Abstract][Full Text] [Related]
14. ATAC-Seq Analysis of Accessible Chromatin: From Experimental Steps to Data Analysis. Tatara M; Ikeda T; Namekawa SH; Maezawa S Methods Mol Biol; 2023; 2577():65-81. PubMed ID: 36173566 [TBL] [Abstract][Full Text] [Related]
15. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963 [TBL] [Abstract][Full Text] [Related]
16. A rapid and robust method for single cell chromatin accessibility profiling. Chen X; Miragaia RJ; Natarajan KN; Teichmann SA Nat Commun; 2018 Dec; 9(1):5345. PubMed ID: 30559361 [TBL] [Abstract][Full Text] [Related]
17. Quantification, Dynamic Visualization, and Validation of Bias in ATAC-Seq Data with ataqv. Orchard P; Kyono Y; Hensley J; Kitzman JO; Parker SCJ Cell Syst; 2020 Mar; 10(3):298-306.e4. PubMed ID: 32213349 [TBL] [Abstract][Full Text] [Related]