These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 36130957)

  • 1. Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA.
    Hu SS; Liu L; Li Q; Ma W; Guertin MJ; Meyer CA; Deng K; Zhang T; Zang C
    Nat Commun; 2022 Sep; 13(1):5533. PubMed ID: 36130957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks.
    Cazares TA; Rizvi FW; Iyer B; Chen X; Kotliar M; Bejjani AT; Wayman JA; Donmez O; Wronowski B; Parameswaran S; Kottyan LC; Barski A; Weirauch MT; Prasath VBS; Miraldi ER
    PLoS Comput Biol; 2023 Jan; 19(1):e1010863. PubMed ID: 36719906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq datasets using protocol-specific bias modeling.
    Karabacak Calviello A; Hirsekorn A; Wurmus R; Yusuf D; Ohler U
    Genome Biol; 2019 Feb; 20(1):42. PubMed ID: 30791920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical Approaches for ATAC-seq Data Analysis.
    Smith JP; Sheffield NC
    Curr Protoc Hum Genet; 2020 Jun; 106(1):e101. PubMed ID: 32543102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq.
    Zhou W; Ji Z; Fang W; Ji H
    Nucleic Acids Res; 2019 Nov; 47(19):e121. PubMed ID: 31428792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L; Li X; Dong L; Wang B; Pan L
    BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correcting nucleotide-specific biases in high-throughput sequencing data.
    Wang JR; Quach B; Furey TS
    BMC Bioinformatics; 2017 Aug; 18(1):357. PubMed ID: 28764645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes.
    Baek S; Sung MH
    Methods Mol Biol; 2016; 1418():225-40. PubMed ID: 27008018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK; Shipony Z
    Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq.
    Grbesa I; Tannenbaum M; Sarusi-Portuguez A; Schwartz M; Hakim O
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference.
    Pranzatelli TJF; Michael DG; Chiorini JA
    BMC Genomics; 2018 Jul; 19(1):563. PubMed ID: 30064353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATAC-Seq Analysis of Accessible Chromatin: From Experimental Steps to Data Analysis.
    Tatara M; Ikeda T; Namekawa SH; Maezawa S
    Methods Mol Biol; 2023; 2577():65-81. PubMed ID: 36173566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks.
    Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA
    Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid and robust method for single cell chromatin accessibility profiling.
    Chen X; Miragaia RJ; Natarajan KN; Teichmann SA
    Nat Commun; 2018 Dec; 9(1):5345. PubMed ID: 30559361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification, Dynamic Visualization, and Validation of Bias in ATAC-Seq Data with ataqv.
    Orchard P; Kyono Y; Hensley J; Kitzman JO; Parker SCJ
    Cell Syst; 2020 Mar; 10(3):298-306.e4. PubMed ID: 32213349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEDEA: analysis of transcription factor binding motifs in accessible chromatin.
    Mariani L; Weinand K; Gisselbrecht SS; Bulyk ML
    Genome Res; 2020 May; 30(5):736-748. PubMed ID: 32424069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Molecule Multikilobase-Scale Profiling of Chromatin Accessibility Using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq.
    Marinov GK; Shipony Z; Kundaje A; Greenleaf WJ
    Methods Mol Biol; 2022; 2458():269-298. PubMed ID: 35103973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CloudATAC: a cloud-based framework for ATAC-Seq data analysis.
    Veerappa AM; Rowley MJ; Maggio A; Beaudry L; Hawkins D; Kim A; Sethi S; Sorgen PL; Guda C
    Brief Bioinform; 2024 Jul; 25(Supplement_1):. PubMed ID: 39041910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.