These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 36131178)
1. A data-driven interpretable ensemble framework based on tree models for forecasting the occurrence of COVID-19 in the USA. Zheng HL; An SY; Qiao BJ; Guan P; Huang DS; Wu W Environ Sci Pollut Res Int; 2023 Jan; 30(5):13648-13659. PubMed ID: 36131178 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based models for the prediction of breast cancer recurrence risk. Zuo D; Yang L; Jin Y; Qi H; Liu Y; Ren L BMC Med Inform Decis Mak; 2023 Nov; 23(1):276. PubMed ID: 38031071 [TBL] [Abstract][Full Text] [Related]
3. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
4. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. Huang T; Le D; Yuan L; Xu S; Peng X PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342 [TBL] [Abstract][Full Text] [Related]
5. Interpretable prediction of acute respiratory infection disease among under-five children in Ethiopia using ensemble machine learning and Shapley additive explanations (SHAP). Tadese ZB; Hailu DT; Abebe AW; Kebede SD; Walle AD; Seifu BL; Nimani TD Digit Health; 2024; 10():20552076241272739. PubMed ID: 39114117 [TBL] [Abstract][Full Text] [Related]
6. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
7. Using a stacked ensemble learning framework to predict modulators of protein-protein interactions. Gao M; Zhao L; Zhang Z; Wang J; Wang C Comput Biol Med; 2023 Jul; 161():107032. PubMed ID: 37230018 [TBL] [Abstract][Full Text] [Related]
8. Interpretable Machine Learning-Based Influence Factor Identification for 3D Printing Process-Structure Linkages. Liu F; Chen Z; Xu J; Zheng Y; Su W; Tian M; Li G Polymers (Basel); 2024 Sep; 16(18):. PubMed ID: 39339143 [TBL] [Abstract][Full Text] [Related]
9. Seasonal prediction of daily PM Wu Y; Lin S; Shi K; Ye Z; Fang Y Environ Sci Pollut Res Int; 2022 Jun; 29(30):45821-45836. PubMed ID: 35150424 [TBL] [Abstract][Full Text] [Related]
10. Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting. Ahn JM; Kim J; Kim K Toxins (Basel); 2023 Oct; 15(10):. PubMed ID: 37888638 [TBL] [Abstract][Full Text] [Related]
11. A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods. Dostmohammadi M; Pedram MZ; Hoseinzadeh S; Garcia DA J Environ Manage; 2024 Jul; 364():121264. PubMed ID: 38870783 [TBL] [Abstract][Full Text] [Related]
12. Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach. Cakiroglu C; Aydın Y; Bekdaş G; Geem ZW Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444890 [TBL] [Abstract][Full Text] [Related]
13. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589 [TBL] [Abstract][Full Text] [Related]
14. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Online Psychological Help-Seeking Behavior During the COVID-19 Pandemic: An Interpretable Machine Learning Method. Liu H; Zhang L; Wang W; Huang Y; Li S; Ren Z; Zhou Z Front Public Health; 2022; 10():814366. PubMed ID: 35309216 [TBL] [Abstract][Full Text] [Related]
16. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan. Pai KC; Su SA; Chan MC; Wu CL; Chao WC BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785 [TBL] [Abstract][Full Text] [Related]
17. A hybrid approach for modeling bicycle crash frequencies: Integrating random forest based SHAP model with random parameter negative binomial regression model. Ding H; Wang R; Chen T; Sze NN; Chung H; Dong N Accid Anal Prev; 2024 Dec; 208():107778. PubMed ID: 39288451 [TBL] [Abstract][Full Text] [Related]
18. Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations. Dong S; Khattak A; Ullah I; Zhou J; Hussain A Int J Environ Res Public Health; 2022 Mar; 19(5):. PubMed ID: 35270617 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of 11 non-linear regression models highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in soybean branching prediction. Zhou W; Yan Z; Zhang L Sci Rep; 2024 Mar; 14(1):5905. PubMed ID: 38467662 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Cavity Length Using an Interpretable Ensemble Learning Approach. Guo G; Li S; Liu Y; Cao Z; Deng Y Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36613022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]