These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 36131323)

  • 1. An integrated microfluidics platform with high-throughput single-cell cloning array and concentration gradient generator for efficient cancer drug effect screening.
    Wang B; He BS; Ruan XL; Zhu J; Hu R; Wang J; Li Y; Yang YH; Liu ML
    Mil Med Res; 2022 Sep; 9(1):51. PubMed ID: 36131323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator.
    Lee Y; Chen Z; Lim W; Cho H; Park S
    Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy.
    Lim W; Park S
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30567363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating a Concentration Gradient Generator and a Single-Cell Trapper Array for High-Throughput Screening the Bioeffects of Nanomaterials.
    Liu X; Jia Y; Han Z; Hou Q; Zhang W; Zheng W; Jiang X
    Angew Chem Int Ed Engl; 2021 May; 60(22):12319-12322. PubMed ID: 33770418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening.
    Hong B; Xue P; Wu Y; Bao J; Chuah YJ; Kang Y
    Biomed Microdevices; 2016 Feb; 18(1):21. PubMed ID: 26864970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massively parallel quantification of phenotypic heterogeneity in single-cell drug responses.
    Yellen BB; Zawistowski JS; Czech EA; Sanford CI; SoRelle ED; Luftig MA; Forbes ZG; Wood KC; Hammerbacher J
    Sci Adv; 2021 Sep; 7(38):eabf9840. PubMed ID: 34533995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation.
    Liu W; Liu D; Hu R; Huang Z; Sun M; Han K
    Analyst; 2020 Oct; 145(20):6447-6455. PubMed ID: 33043931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis.
    Briones J; Espulgar W; Koyama S; Takamatsu H; Tamiya E; Saito M
    Sci Rep; 2021 Jun; 11(1):12995. PubMed ID: 34155296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Static Molecular Gradients in a High-Throughput Drug Screening Microfluidic Assay.
    Szafran RG; Wiatrak B
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated microfludic device for culturing and screening of Giardia lamblia.
    Zheng GX; Zhang XM; Yang YS; Zeng SR; Wei JF; Wang YH; Li YJ
    Exp Parasitol; 2014 Feb; 137():1-7. PubMed ID: 24316463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary Human Pancreatic Cancer Cells Cultivation in Microfluidic Hydrogel Microcapsules for Drug Evaluation.
    Song T; Zhang H; Luo Z; Shang L; Zhao Y
    Adv Sci (Weinh); 2023 Apr; 10(12):e2206004. PubMed ID: 36808707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale investigation of single cell activities and response dynamics in a microarray chip with a microfluidics-fabricated microporous membrane.
    Han K; Sun M; Zhang J; Fu W; Hu R; Liu D; Liu W
    Analyst; 2021 Jul; 146(13):4303-4313. PubMed ID: 34105525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Microfluidic cell culture array chip for drug screening assays].
    Zheng Y; Wu J; Shao J; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):779-85. PubMed ID: 19670650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics for cell-based high throughput screening platforms - A review.
    Du G; Fang Q; den Toonder JM
    Anal Chim Acta; 2016 Jan; 903():36-50. PubMed ID: 26709297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple integrated microfluidic platform for the research of hydrogels containing gradients in cell density induced breast cancer electrochemotherapy.
    Lin X; Wang C; Fang F; Zhou S
    Talanta; 2023 Feb; 253():123920. PubMed ID: 36122433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet Microfluidics for Current Cancer Research: From Single-Cell Analysis to 3D Cell Culture.
    Jiang L; Guo K; Chen Y; Xiang N
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1335-1354. PubMed ID: 38420753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations.
    Postek W; Garstecki P
    Acc Chem Res; 2022 Mar; 55(5):605-615. PubMed ID: 35119826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Throughput Single-Cell Assay on a Valve-Based Microfluidic Platform Applied to Protein Quantification, Immune Response Monitoring, and Drug Discovery.
    Briones JC; Espulgar WV; Koyama S; Takamatsu H; Saito M; Tamiya E
    Methods Mol Biol; 2023; 2689():119-142. PubMed ID: 37430051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of cellular response to drugs with a microfluidic single-cell platform based on hyperspectral imaging.
    Liu L; Zhang L; Zhang X; Dong X; Jiang X; Huang X; Li W; Xie X; Qiu X
    Anal Chim Acta; 2024 Feb; 1288():342158. PubMed ID: 38220290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.