These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 36131326)

  • 1. ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data.
    Vadnais D; Middleton M; Oluwadare O
    BioData Min; 2022 Sep; 15(1):19. PubMed ID: 36131326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ParticleChromo3D+: A Web Server for ParticleChromo3D Algorithm for 3D Chromosome Structure Reconstruction.
    Vadnais D; Oluwadare O
    Curr Issues Mol Biol; 2023 Mar; 45(3):2549-2560. PubMed ID: 36975537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HiC-GNN: A generalizable model for 3D chromosome reconstruction using graph convolutional neural networks.
    Hovenga V; Kalita J; Oluwadare O
    Comput Struct Biotechnol J; 2023; 21():812-836. PubMed ID: 36698967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data.
    Wang J; Nakato R
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.
    Wang B; Liu K; Li Y; Wang J
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHi-C2: interpreting Hi-C data as the dynamic 3D genome state.
    Shinkai S; Itoga H; Kyoda K; Onami S
    Bioinformatics; 2022 Oct; 38(21):4984-4986. PubMed ID: 36087002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3-D Chromosome Structure Reconstruction Method With High Resolution Hi-C Data Using Nonlinear Dimensionality Reduction and Divide-and-Conquer Strategy.
    Gong H; Ma F; Zhang X; Yang Y; Li M; Chen Z; Zhang S; Chen Y
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):716-727. PubMed ID: 37200118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome structure modeling tools and their evaluation in bacteria.
    Liu T; Qiu QT; Hua KJ; Ma BG
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Every gene everywhere all at once: High-precision measurement of 3D chromosome architecture with single-cell Hi-C.
    Chi Y; Shi J; Xing D; Tan L
    Front Mol Biosci; 2022; 9():959688. PubMed ID: 36275628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
    Hicks P; Oluwadare O
    Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction.
    Collins B; Oluwadare O; Brown P
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EVRC: reconstruction of chromosome 3D structure models using error-vector resultant algorithm with clustering coefficient.
    Wang X; Gu WC; Li J; Ma BG
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37847746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted DNase Hi-C.
    Duan Z
    Methods Mol Biol; 2021; 2157():65-83. PubMed ID: 32820399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.