These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36131724)

  • 21. Electrical impedance spectroscopy (EIS) in plant roots research: a review.
    Liu Y; Li D; Qian J; Di B; Zhang G; Ren Z
    Plant Methods; 2021 Nov; 17(1):118. PubMed ID: 34774075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine Learning for Stem Cell Differentiation and Proliferation Classification on Electrical Impedance Spectroscopy.
    Cunha AB; Hou J; Schuelke C
    J Electr Bioimpedance; 2019 Jan; 10(1):124-132. PubMed ID: 33584893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of parameters obtained by electrochemical impedance spectroscopy on systems containing high capacities.
    Stević Z; Vujasinović MR; Radunović M
    Sensors (Basel); 2009; 9(9):7365-73. PubMed ID: 22400000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection and Characterization of Single Particles by Electrochemical Impedance Spectroscopy.
    Roehrich B; Liu EZ; Silverstein R; Sepunaru L
    J Phys Chem Lett; 2021 Oct; 12(40):9748-9753. PubMed ID: 34591489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equivalent circuit models for a biomembrane impedance sensor and analysis of electrochemical impedance spectra based on support vector regression.
    Xu Y; Li C; Mei W; Guo M; Yang Y
    Med Biol Eng Comput; 2019 Jul; 57(7):1515-1524. PubMed ID: 30941674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impedance Spectroscopy Analysis and Equivalent Circuit Modeling of Graphene Oxide Solutions.
    Yoon Y; Jo J; Kim S; Lee IG; Cho BJ; Shin M; Hwang WS
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29240716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extending the double-dispersion Cole-Cole, Cole-Davidson and Havriliak-Negami electrochemical impedance spectroscopy models.
    Elwakil AS; Al-Ali AA; Maundy BJ
    Eur Biophys J; 2021 Sep; 50(6):915-926. PubMed ID: 34009404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring bacterial-demineralization of human dentine by electrochemical impedance spectroscopy.
    Xu Z; Neoh KG; Amaechi B; Kishen A
    J Dent; 2010 Feb; 38(2):138-48. PubMed ID: 19804810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoimprinted conducting nanopillar arrays made of MWCNT/polymer nanocomposites: a study by electrochemical impedance spectroscopy.
    Xiao C; Zhao Y; Zhou W
    Nanoscale Adv; 2021 Jan; 3(2):556-566. PubMed ID: 36131730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple and fast method to determine water content in biodiesel by electrochemical impedance spectroscopy.
    Delfino JR; Pereira TC; Costa Viegas HD; Marques EP; Pupim Ferreira AA; Zhang L; Zhang J; Brandes Marques AL
    Talanta; 2018 Mar; 179():753-759. PubMed ID: 29310304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Digital Impedance Emulator for Battery Measurement System Calibration.
    Santoni F; De Angelis A; Moschitta A; Carbone P
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement.
    Pradhan R; Raisa SA; Kumar P; Kalkal A; Kumar N; Packirisamy G; Manhas S
    Biomed Microdevices; 2021 Jan; 23(1):9. PubMed ID: 33449205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of electrochemical impedance spectroscopy response for commercial lithium-ion batteries: modeling of equivalent circuit elements.
    Morali U; Erol S
    Turk J Chem; 2020; 44(3):602-613. PubMed ID: 33488180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting Health Material Accessibility: Development of Machine Learning Algorithms.
    Ji M; Liu Y; Hao T
    JMIR Med Inform; 2021 Sep; 9(9):e29175. PubMed ID: 34468321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating optical and electrical sensing with machine learning for advanced particle characterization.
    Kokabi M; Tayyab M; Rather GM; Pournadali Khamseh A; Cheng D; DeMauro EP; Javanmard M
    Biomed Microdevices; 2024 May; 26(2):25. PubMed ID: 38780704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-Cell Classification Based on Population Nucleus Size Combining Microwave Impedance Spectroscopy and Machine Learning.
    Ferguson CA; Hwang JCM; Zhang Y; Cheng X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems.
    Park JS; Choi JH; Woo JJ; Moon SH
    J Colloid Interface Sci; 2006 Aug; 300(2):655-62. PubMed ID: 16730020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic Electrochemical Impedance Spectroscopy of Carbon Composite Nanofluids.
    Jung Lee H; Bai SJ; Seok Song Y
    Sci Rep; 2017 Apr; 7(1):722. PubMed ID: 28389655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Field deployable impedance-based corrosion sensor.
    Li J; Jiang X; Khan F; Ye X; Wang S; Chen J
    Sci Rep; 2022 Jan; 12(1):236. PubMed ID: 34996955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Harmonic Error Cancellation Method for Accurate Clock-Based Electrochemical Impedance Spectroscopy.
    Subhan S; Ha S
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):710-724. PubMed ID: 31226085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.