These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36131736)

  • 1. Schottky barrier lowering due to interface states in 2D heterophase devices.
    Jelver L; Stradi D; Stokbro K; Jacobsen KW
    Nanoscale Adv; 2021 Jan; 3(2):567-574. PubMed ID: 36131736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low Contact Barrier in 2H/1T' MoTe
    Zhang X; Jin Z; Wang L; Hachtel JA; Villarreal E; Wang Z; Ha T; Nakanishi Y; Tiwary CS; Lai J; Dong L; Yang J; Vajtai R; Ringe E; Idrobo JC; Yakobson BI; Lou J; Gambin V; Koltun R; Ajayan PM
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12777-12785. PubMed ID: 30854848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MoTe
    Ma R; Zhang H; Yoo Y; Degregorio ZP; Jin L; Golani P; Ghasemi Azadani J; Low T; Johns JE; Bendersky LA; Davydov AV; Koester SJ
    ACS Nano; 2019 Jul; 13(7):8035-8046. PubMed ID: 31247141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors.
    Fan ZQ; Jiang XW; Chen J; Luo JW
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19271-19277. PubMed ID: 29737827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. van der Waals Epitaxy of High-Mobility Polymorphic Structure of Mo
    Lee RS; Kim D; Pawar SA; Kim T; Shin JC; Kang SW
    ACS Nano; 2019 Jan; 13(1):642-648. PubMed ID: 30609346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning.
    Nakaharai S; Yamamoto M; Ueno K; Tsukagoshi K
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14732-9. PubMed ID: 27203118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecule-Upgraded van der Waals Contacts for Schottky-Barrier-Free Electronics.
    Zhang X; Kang Z; Gao L; Liu B; Yu H; Liao Q; Zhang Z; Zhang Y
    Adv Mater; 2021 Nov; 33(45):e2104935. PubMed ID: 34569109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions.
    Zhang X; Liu B; Gao L; Yu H; Liu X; Du J; Xiao J; Liu Y; Gu L; Liao Q; Kang Z; Zhang Z; Zhang Y
    Nat Commun; 2021 Mar; 12(1):1522. PubMed ID: 33750797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-van-der-Waals Barrier-Free Contacts for High-Mobility Transistors.
    Zhang X; Yu H; Tang W; Wei X; Gao L; Hong M; Liao Q; Kang Z; Zhang Z; Zhang Y
    Adv Mater; 2022 Aug; 34(34):e2109521. PubMed ID: 35165952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced 1T'-Phase Stabilization and Chemical Reactivity in a MoTe
    Tang Q
    Chemphyschem; 2019 Feb; 20(4):595-601. PubMed ID: 30565832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes.
    Song S; Yoon A; Jang S; Lynch J; Yang J; Han J; Choe M; Jin YH; Chen CY; Cheon Y; Kwak J; Jeong C; Cheong H; Jariwala D; Lee Z; Kwon SY
    Nat Commun; 2023 Aug; 14(1):4747. PubMed ID: 37550303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact engineering for 2D Janus MoSSe/metal junctions.
    Shu Y; Li T; Miao N; Gou J; Huang X; Cui Z; Xiong R; Wen C; Zhou J; Sa B; Sun Z
    Nanoscale Horiz; 2024 Jan; 9(2):264-277. PubMed ID: 38019263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance 5.1 nm in-plane Janus WSeTe Schottky barrier field effect transistors.
    Fan ZQ; Zhang ZH; Yang SY
    Nanoscale; 2020 Nov; 12(42):21750-21756. PubMed ID: 33094782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides.
    Kim C; Moon I; Lee D; Choi MS; Ahmed F; Nam S; Cho Y; Shin HJ; Park S; Yoo WJ
    ACS Nano; 2017 Feb; 11(2):1588-1596. PubMed ID: 28088846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimensionality-Reduced Fermi Level Pinning in Coplanar 2D Heterojunctions.
    Yu H; Gupta S; Kutana A; Yakobson BI
    J Phys Chem Lett; 2021 May; 12(17):4299-4305. PubMed ID: 33913712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low Schottky barrier height and transport mechanism in gold-graphene-silicon (001) heterojunctions.
    Courtin J; Le Gall S; Chrétien P; Moréac A; Delhaye G; Lépine B; Tricot S; Turban P; Schieffer P; Le Breton JC
    Nanoscale Adv; 2019 Sep; 1(9):3372-3378. PubMed ID: 36133562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contact barrier of a 1T'/2H MoS
    Sun J; Dou H; Zhang G; Leng J
    Phys Chem Chem Phys; 2021 Mar; 23(11):6791-6799. PubMed ID: 33721008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions.
    Aierken Y; Sevik C; Gülseren O; Peeters FM; Çakır D
    Nanotechnology; 2018 Jul; 29(29):295202. PubMed ID: 29714168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectricity across 2D Phase Boundaries.
    Puthirath AB; Zhang X; Krishnamoorthy A; Xu R; Samghabadi FS; Moore DC; Lai J; Zhang T; Sanchez DE; Zhang F; Glavin NR; Litvinov D; Vajtai R; Swaminathan V; Terrones M; Zhu H; Vashishta P; Ajayan PM
    Adv Mater; 2022 Sep; 34(39):e2206425. PubMed ID: 35929436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides.
    Yuan J; Chen Y; Xie Y; Zhang X; Rao D; Guo Y; Yan X; Feng YP; Cai Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6362-6369. PubMed ID: 32161125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.