These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36132045)

  • 1. Resonant tip-enhanced Raman scattering by CdSe nanocrystals on plasmonic substrates.
    Milekhin IA; Rahaman M; Anikin KV; Rodyakina EE; Duda TA; Saidzhonov BM; Vasiliev RB; Dzhagan VM; Milekhin AG; Latyshev AV; Zahn DRT
    Nanoscale Adv; 2020 Nov; 2(11):5441-5449. PubMed ID: 36132045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates.
    Milekhin IA; Milekhin AG; Zahn DRT
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals.
    Sheremet E; Milekhin AG; Rodriguez RD; Weiss T; Nesterov M; Rodyakina EE; Gordan OD; Sveshnikova LL; Duda TA; Gridchin VA; Dzhagan VM; Hietschold M; Zahn DR
    Phys Chem Chem Phys; 2015 Sep; 17(33):21198-203. PubMed ID: 25566587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Role of Different Substrate Geometries for Achieving Optimum Tip-Enhanced Raman Scattering Sensitivity.
    He L; Rahaman M; Madeira TI; Zahn DRT
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33540743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir-Blodgett technique.
    Milekhin AG; Sveshnikova LL; Duda TA; Rodyakina EE; Dzhagan VM; Gordan OD; Veber SL; Himcinschi C; Latyshev AV; Zahn DR
    Beilstein J Nanotechnol; 2015; 6():2388-95. PubMed ID: 26734529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant Raman scattering on graphene: SERS and gap-mode TERS.
    Kurus NN; Kalinin V; Nebogatikova NA; Milekhin IA; Antonova IV; Rodyakina EE; Milekhin AG; Latyshev AV; Zahn DRT
    RSC Adv; 2024 Jan; 14(6):3667-3674. PubMed ID: 38268550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local phonon imaging of AlN nanostructures with nanoscale spatial resolution.
    Milekhin I; Anikin K; Kurus NN; Mansurov VG; Malin TV; Zhuravlev KS; Milekhin AG; Latyshev AV; Zahn DRT
    Nanoscale Adv; 2023 May; 5(10):2820-2830. PubMed ID: 37205283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the focused gap-plasmon mode on tip-enhanced Raman excitation and scattering.
    Zhang C; Min C; Li L; Zhang Y; Wei S; Wang X; Yuan X
    Opt Express; 2023 Jan; 31(3):4216-4228. PubMed ID: 36785395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering.
    Rahaman M; Milekhin AG; Mukherjee A; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT
    Faraday Discuss; 2019 May; 214():309-323. PubMed ID: 30839033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap-Mode Tip-Enhanced Raman Scattering on Au Nanoplates of Varied Thickness.
    Wang R; He Z; Sokolov AV; Kurouski D
    J Phys Chem Lett; 2020 May; 11(10):3815-3820. PubMed ID: 32340446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
    Fang Y; Zhang Z; Chen L; Sun M
    Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-side metal-coated pyramidal cantilever tips for highly reproducible tip-enhanced Raman spectroscopy.
    Kato R; Taguchi K; Yadav R; Umakoshi T; Verma P
    Nanotechnology; 2020 Aug; 31(33):335207. PubMed ID: 32375128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable plasmon resonances in a metallic nanotip-film system.
    Uetsuki K; Verma P; Nordlander P; Kawata S
    Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant gap-plasmon tip-enhanced Raman scattering of MoS
    Milekhin AG; Rahaman M; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT
    Nanoscale; 2018 Feb; 10(6):2755-2763. PubMed ID: 29308796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging.
    Zhang Y; Voronine DV; Qiu S; Sinyukov AM; Hamilton M; Liege Z; Sokolov AV; Zhang Z; Scully MO
    Sci Rep; 2016 May; 6():25788. PubMed ID: 27220882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy.
    Taguchi A; Yu J; Verma P; Kawata S
    Nanoscale; 2015 Nov; 7(41):17424-33. PubMed ID: 26439510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy.
    Liu P; Chulhai DV; Jensen L
    ACS Nano; 2017 May; 11(5):5094-5102. PubMed ID: 28463555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tip-Enhanced Raman Scattering on Both Sides of the Schrödinger Equation.
    El-Khoury PZ
    Acc Chem Res; 2021 Dec; 54(24):4576-4583. PubMed ID: 34855342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Localized Strain in a MoS
    Rahaman M; Rodriguez RD; Plechinger G; Moras S; Schüller C; Korn T; Zahn DRT
    Nano Lett; 2017 Oct; 17(10):6027-6033. PubMed ID: 28925710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.