These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 36132071)
1. A Machine Learning Model Based on Unsupervised Clustering Multihabitat to Predict the Pathological Grading of Meningiomas. Wang X; Li J; Sun J; Liu W; Cai L; Zhao P; Yang Z; Lv H; Wang Z Biomed Res Int; 2022; 2022():8955227. PubMed ID: 36132071 [TBL] [Abstract][Full Text] [Related]
2. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
3. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
4. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study. Banzato T; Causin F; Della Puppa A; Cester G; Mazzai L; Zotti A J Magn Reson Imaging; 2019 Oct; 50(4):1152-1159. PubMed ID: 30896065 [TBL] [Abstract][Full Text] [Related]
6. Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning. Jun Y; Park YW; Shin H; Shin Y; Lee JR; Han K; Ahn SS; Lim SM; Hwang D; Lee SK Eur Radiol; 2023 Sep; 33(9):6124-6133. PubMed ID: 37052658 [TBL] [Abstract][Full Text] [Related]
7. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409 [TBL] [Abstract][Full Text] [Related]
8. Dynamic susceptibility contrast and dynamic contrast-enhanced MRI characteristics to distinguish microcystic meningiomas from traditional Grade I meningiomas and high-grade gliomas. Hussain NS; Moisi MD; Keogh B; McCullough BJ; Rostad S; Newell D; Gwinn R; Foltz G; Mayberg M; Aguedan B; Good V; Fouke SJ J Neurosurg; 2017 Apr; 126(4):1220-1226. PubMed ID: 27285539 [TBL] [Abstract][Full Text] [Related]
10. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
11. Correlation of volumetric growth and histological grade in 50 meningiomas. Soon WC; Fountain DM; Koczyk K; Abdulla M; Giri S; Allinson K; Matys T; Guilfoyle MR; Kirollos RW; Santarius T Acta Neurochir (Wien); 2017 Nov; 159(11):2169-2177. PubMed ID: 28791500 [TBL] [Abstract][Full Text] [Related]
12. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817 [TBL] [Abstract][Full Text] [Related]
13. Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging. Kandemirli SG; Chopra S; Priya S; Ward C; Locke T; Soni N; Srivastava S; Jones K; Bathla G Clin Neurol Neurosurg; 2020 Nov; 198():106205. PubMed ID: 32932028 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455 [TBL] [Abstract][Full Text] [Related]
15. WHO grade I meningioma subtypes: MRI features and pathological analysis. Zhang T; Yu JM; Wang YQ; Yin DD; Fang LJ Life Sci; 2018 Nov; 213():50-56. PubMed ID: 30153449 [TBL] [Abstract][Full Text] [Related]
16. A radiopathological classification of dural tail sign of meningiomas. Qi ST; Liu Y; Pan J; Chotai S; Fang LX J Neurosurg; 2012 Oct; 117(4):645-53. PubMed ID: 22839654 [TBL] [Abstract][Full Text] [Related]
17. Predicting meningioma grades and pathologic marker expression via deep learning. Chen J; Xue Y; Ren L; Lv K; Du P; Cheng H; Sun S; Hua L; Xie Q; Wu R; Gong Y Eur Radiol; 2024 May; 34(5):2997-3008. PubMed ID: 37853176 [TBL] [Abstract][Full Text] [Related]
18. Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade. Chu H; Lin X; He J; Pang P; Fan B; Lei P; Guo D; Ye C Acad Radiol; 2021 May; 28(5):687-693. PubMed ID: 32418785 [TBL] [Abstract][Full Text] [Related]
19. Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging. Han T; Liu X; Long C; Xu Z; Geng Y; Zhang B; Deng L; Jing M; Zhou J Magn Reson Imaging; 2023 Dec; 104():16-22. PubMed ID: 37734573 [TBL] [Abstract][Full Text] [Related]
20. Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging. Hale AT; Stonko DP; Wang L; Strother MK; Chambless LB Neurosurg Focus; 2018 Nov; 45(5):E4. PubMed ID: 30453458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]