These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36132100)

  • 1. Phase change thin films for non-volatile memory applications.
    Lotnyk A; Behrens M; Rauschenbach B
    Nanoscale Adv; 2019 Oct; 1(10):3836-3857. PubMed ID: 36132100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic Photonic Memory Devices Using Ultrafast, Non-Volatile Phase-Change Materials.
    Chen X; Xue Y; Sun Y; Shen J; Song S; Zhu M; Song Z; Cheng Z; Zhou P
    Adv Mater; 2023 Sep; 35(37):e2203909. PubMed ID: 35713563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Transitions in Ge
    Behrens M; Lotnyk A; Bryja H; Gerlach JW; Rauschenbach B
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-phase deposition and nanopatterning of GeSbSe phase-change materials.
    Milliron DJ; Raoux S; Shelby RM; Jordan-Sweet J
    Nat Mater; 2007 May; 6(5):352-6. PubMed ID: 17417642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the Structural and Optical Properties of Germanium Telluride Phase-Change Materials by Indium Incorporation.
    Wang X; Shen X; Sun S; Zhang W
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chalcogenide phase-change thin films used as grayscale photolithography materials.
    Wang R; Wei J; Fan Y
    Opt Express; 2014 Mar; 22(5):4973-84. PubMed ID: 24663836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Assessment of Interfaces in Projected Phase-Change Memory.
    Bragaglia V; Jonnalagadda VP; Sousa M; Sarwat SG; Kersting B; Sebastian A
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Multilevel Memory Performance of MnTe Thin Films by Ta Doping.
    Yuan Y; He L; Qian J; Song S; Song Z; Liu R; Zhai J
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17778-17786. PubMed ID: 38534114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials Screening for Disorder-Controlled Chalcogenide Crystals for Phase-Change Memory Applications.
    Xu Y; Wang X; Zhang W; Schäfer L; Reindl J; Vom Bruch F; Zhou Y; Evang V; Wang JJ; Deringer VL; Ma E; Wuttig M; Mazzarello R
    Adv Mater; 2021 Mar; 33(9):e2006221. PubMed ID: 33491816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices.
    Aryana K; Gaskins JT; Nag J; Stewart DA; Bai Z; Mukhopadhyay S; Read JC; Olson DH; Hoglund ER; Howe JM; Giri A; Grobis MK; Hopkins PE
    Nat Commun; 2021 Feb; 12(1):774. PubMed ID: 33536411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling Crystallization Mechanisms and Electronic Structure of Phase-Change Materials by Large-Scale Ab Initio Simulations.
    Xu Y; Zhou Y; Wang XD; Zhang W; Ma E; Deringer VL; Mazzarello R
    Adv Mater; 2022 Mar; 34(11):e2109139. PubMed ID: 34994023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications.
    Abbas H; Li J; Ang DS
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roadmap for phase change materials in photonics and beyond.
    Prabhathan P; Sreekanth KV; Teng J; Ko JH; Yoo YJ; Jeong HH; Lee Y; Zhang S; Cao T; Popescu CC; Mills B; Gu T; Fang Z; Chen R; Tong H; Wang Y; He Q; Lu Y; Liu Z; Yu H; Mandal A; Cui Y; Ansari AS; Bhingardive V; Kang M; Lai CK; Merklein M; Müller MJ; Song YM; Tian Z; Hu J; Losurdo M; Majumdar A; Miao X; Chen X; Gholipour B; Richardson KA; Eggleton BJ; Sharda K; Wuttig M; Singh R
    iScience; 2023 Oct; 26(10):107946. PubMed ID: 37854690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory.
    Lee SH; Jung Y; Agarwal R
    Nat Nanotechnol; 2007 Oct; 2(10):626-30. PubMed ID: 18654387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimony as a Programmable Element in Integrated Nanophotonics.
    Aggarwal S; Milne T; Farmakidis N; Feldmann J; Li X; Shu Y; Cheng Z; Salinga M; Pernice WH; Bhaskaran H
    Nano Lett; 2022 May; 22(9):3532-3538. PubMed ID: 35451845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-change materials for rewriteable data storage.
    Wuttig M; Yamada N
    Nat Mater; 2007 Nov; 6(11):824-32. PubMed ID: 17972937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure characterization, phase transition, and device application of phase-change memory materials.
    Jiang K; Li S; Chen F; Zhu L; Li W
    Sci Technol Adv Mater; 2023; 24(1):2252725. PubMed ID: 37745781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial phase-change memory.
    Simpson RE; Fons P; Kolobov AV; Fukaya T; Krbal M; Yagi T; Tominaga J
    Nat Nanotechnol; 2011 Jul; 6(8):501-5. PubMed ID: 21725305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-Responsive Phase Change Materials: Optical and Optoelectronic Applications.
    Vassalini I; Alessandri I; de Ceglia D
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34205233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glassy GaS: transparent and unusually rigid thin films for visible to mid-IR memory applications.
    Tverjanovich A; Khomenko M; Bereznev S; Fontanari D; Sokolov A; Usuki T; Ohara K; Le Coq D; Masselin P; Bychkov E
    Phys Chem Chem Phys; 2020 Nov; 22(44):25560-25573. PubMed ID: 33146174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.