These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36132162)

  • 1. Modulating the growth of chemically deposited ZnO nanowires and the formation of nitrogen- and hydrogen-related defects using pH adjustment.
    Villafuerte J; Sarigiannidou E; Donatini F; Kioseoglou J; Chaix-Pluchery O; Pernot J; Consonni V
    Nanoscale Adv; 2022 Mar; 4(7):1793-1807. PubMed ID: 36132162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Hydrogen-Related Defects in ZnO Nanowires Using Oxygen Plasma Treatment by Ion Energy Adjustment.
    Dieulesaint A; Chaix-Pluchery O; Weber M; Donatini F; Lacoste A; Consonni V; Sarigiannidou E
    Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Path of Gallium from Chemical Bath into ZnO Nanowires: Mechanisms of Formation and Incorporation.
    Gaffuri P; Appert E; Chaix-Pluchery O; Rapenne L; Salaün M; Consonni V
    Inorg Chem; 2019 Aug; 58(15):10269-10279. PubMed ID: 31310521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay Effects in the Co-Doping of ZnO Nanowires with Al and Ga Using Chemical Bath Deposition.
    Baillard A; Appert E; Weber M; Jacob V; Roussel H; Rapenne L; Chaix-Pluchery O; Consonni V
    Inorg Chem; 2023 Jan; 62(3):1165-1177. PubMed ID: 36631932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacancy cluster in ZnO films grown by pulsed laser deposition.
    Wang Z; Luo C; Anwand W; Wagner A; Butterling M; Rahman MA; Phillips MR; Ton-That C; Younas M; Su S; Ling FC
    Sci Rep; 2019 Mar; 9(1):3534. PubMed ID: 30837565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Bath Deposition of ZnO Nanowires Using Copper Nitrate as an Additive for Compensating Doping.
    Lausecker C; Salem B; Baillin X; Chaix-Pluchery O; Roussel H; Labau S; Pelissier B; Appert E; Consonni V
    Inorg Chem; 2021 Feb; 60(3):1612-1623. PubMed ID: 33444002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the pH on the Formation and Doping Mechanisms of ZnO Nanowires Using Aluminum Nitrate and Ammonia.
    Verrier C; Appert E; Chaix-Pluchery O; Rapenne L; Rafhay Q; Kaminski-Cachopo A; Consonni V
    Inorg Chem; 2017 Nov; 56(21):13111-13122. PubMed ID: 29045134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-Principles Calculations of the Electronic Structure and Optical Properties of Yttrium-Doped ZnO Monolayer with Vacancy.
    Wu Q; Wang P; Liu Y; Yang H; Cheng J; Guo L; Yang Y; Zhang Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the VZn-NO-H complex in the p-type conductivity in ZnO.
    Amini MN; Saniz R; Lamoen D; Partoens B
    Phys Chem Chem Phys; 2015 Feb; 17(7):5485-9. PubMed ID: 25620352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent thermal behavior of impurity hydrogen trapped in vacancy-type defects in single crystal ZnO.
    Shimizu H; Sato W; Mihara M; Fujisawa T; Fukuda M; Matsuta K
    Appl Radiat Isot; 2018 Oct; 140():224-227. PubMed ID: 30059862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the growth of single crystal ZnO nanowires by tuning the atomic layer deposition parameters of the ZnO seed layer.
    Galan-Gonzalez A; Gallant A; Zeze DA; Atkinson D
    Nanotechnology; 2019 Jul; 30(30):305602. PubMed ID: 30974422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile, wafer-scale compatible growth of ZnO nanowires
    Huang YC; Zhou J; Nomenyo K; Ionescu RE; Gokarna A; Lerondel G
    Nanoscale Adv; 2020 Nov; 2(11):5288-5295. PubMed ID: 36132032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient nitrogen incorporation in ZnO nanowires.
    Stehr JE; Chen WM; Reddy NK; Tu CW; Buyanova IA
    Sci Rep; 2015 Aug; 5():13406. PubMed ID: 26299157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Well-ordered ZnO nanowires with controllable inclination on semipolar ZnO surfaces by chemical bath deposition.
    Cossuet T; Roussel H; Chauveau JM; Chaix-Pluchery O; Thomassin JL; Appert E; Consonni V
    Nanotechnology; 2018 Nov; 29(47):475601. PubMed ID: 30251706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Nitrogen in Defect Evolution in Zinc Oxide: STEM-EELS Nanoscale Investigations.
    Bazioti C; Azarov A; Johansen KM; Svensson BG; Vines L; Kuznetsov AY; Prytz Ø
    J Phys Chem Lett; 2019 Aug; 10(16):4725-4730. PubMed ID: 31365264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors.
    Lupan O; Postica V; Wolff N; Su J; Labat F; Ciofini I; Cavers H; Adelung R; Polonskyi O; Faupel F; Kienle L; Viana B; Pauporté T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32115-32126. PubMed ID: 31385698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Temperature PLD-Growth of Ultrathin ZnO Nanowires by Using Zn
    Shkurmanov A; Sturm C; Franke H; Lenzner J; Grundmann M
    Nanoscale Res Lett; 2017 Dec; 12(1):134. PubMed ID: 28235370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiative recombination mechanisms in individual wurtzite ZnSe nanowires with a defect-free single-crystalline microstructure.
    Saxena A; Pan Q; Ruda HE
    Nanoscale; 2013 Apr; 5(7):2875-82. PubMed ID: 23446447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point defects in ZnO: an approach from first principles.
    Oba F; Choi M; Togo A; Tanaka I
    Sci Technol Adv Mater; 2011 Jun; 12(3):034302. PubMed ID: 27877390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold as an intruder in ZnO nanowires.
    Méndez-Reyes JM; Monroy BM; Bizarro M; Güell F; Martínez A; Ramos E
    Phys Chem Chem Phys; 2015 Sep; 17(33):21525-32. PubMed ID: 26219752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.