These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36132162)

  • 21. Light-Induced Peroxide Formation in ZnO: Origin of Persistent Photoconductivity.
    Kang Y; Nahm HH; Han S
    Sci Rep; 2016 Oct; 6():35148. PubMed ID: 27748378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoluminescence Study of the Influence of Additive Ammonium Hydroxide in Hydrothermally Grown ZnO Nanowires.
    Dahiya AS; Boubenia S; Franzo G; Poulin-Vittrant G; Mirabella S; Alquier D
    Nanoscale Res Lett; 2018 Aug; 13(1):249. PubMed ID: 30136036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Schottky Contacts on Polarity-Controlled Vertical ZnO Nanorods.
    Lord AM; Consonni V; Cossuet T; Donatini F; Wilks SP
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13217-13228. PubMed ID: 32091196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen vacancy diffusion in bare ZnO nanowires.
    Deng B; Luisa da Rosa A; Frauenheim T; Xiao JP; Shi XQ; Zhang RQ; Van Hove MA
    Nanoscale; 2014 Oct; 6(20):11882-6. PubMed ID: 25171601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires.
    Schmidt TM; Miwa RH
    Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques.
    Singh SB; Wang YF; Shao YC; Lai HY; Hsieh SH; Limaye MV; Chuang CH; Hsueh HC; Wang H; Chiou JW; Tsai HM; Pao CW; Chen CH; Lin HJ; Lee JF; Wu CT; Wu JJ; Pong WF; Ohigashi T; Kosugi N; Wang J; Zhou J; Regier T; Sham TK
    Nanoscale; 2014 Aug; 6(15):9166-76. PubMed ID: 24978624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse.
    Biroju RK; Tilak N; Rajender G; Dhara S; Giri PK
    Nanotechnology; 2015 Apr; 26(14):145601. PubMed ID: 25772263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assorted analytical and spectroscopic techniques for the optimization of the defect-related properties in size-controlled ZnO nanowires.
    Wong KM; Fang Y; Devaux A; Wen L; Huang J; De Cola L; Lei Y
    Nanoscale; 2011 Nov; 3(11):4830-9. PubMed ID: 21986965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation.
    Kargar A; Jing Y; Kim SJ; Riley CT; Pan X; Wang D
    ACS Nano; 2013 Dec; 7(12):11112-20. PubMed ID: 24205982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A first-principles study on magnetic properties of the intrinsic defects in wurtzite ZnO.
    Lin QL; Li GP; Xu NN; Liu H; E DJ; Wang CL
    J Chem Phys; 2019 Mar; 150(9):094704. PubMed ID: 30849902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The growth of porous ZnO nanowires by thermal oxidation of ZnS nanowires.
    Hung CC; Lin WT; Wu KH
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11190-4. PubMed ID: 22409083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the electrical activity of individual ZnO nanowires thermally annealed in air.
    Bah M; Tlemcani TS; Boubenia S; Justeau C; Vivet N; Chauveau JM; Jomard F; Nadaud K; Poulin-Vittrant G; Alquier D
    Nanoscale Adv; 2022 Feb; 4(4):1125-1135. PubMed ID: 36131772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emission Spectroscopy Investigation of the Enhancement of Carrier Collection Efficiency in AgBiS
    Xiao Y; Wang H; Awai F; Shibayama N; Kubo T; Segawa H
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6994-7003. PubMed ID: 35099930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis on the energetics, magnetism and electronic properties in a 45° ZnO grain boundary doped with Gd.
    Sasikala Devi AA; Roqan IS
    RSC Adv; 2018 Apr; 8(25):13850-13856. PubMed ID: 35539352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defect properties of ZnO nanowires revealed from an optically detected magnetic resonance study.
    Stehr JE; Chen SL; Filippov S; Devika M; Koteeswara Reddy N; Tu CW; Chen WM; Buyanova IA
    Nanotechnology; 2013 Jan; 24(1):015701. PubMed ID: 23221124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth Conditions Control the Elastic and Electrical Properties of ZnO Nanowires.
    Wang X; Chen K; Zhang Y; Wan J; Warren OL; Oh J; Li J; Ma E; Shan Z
    Nano Lett; 2015 Dec; 15(12):7886-92. PubMed ID: 26510098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visible-Light-Responsive Photocatalytic Activity Significantly Enhanced by Active [
    Ferreira NS; Sasaki JM; Silva RS; Attah-Baah JM; Macêdo MA
    Inorg Chem; 2021 Apr; 60(7):4475-4496. PubMed ID: 33710867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An
    Apip C; Martínez A; Meléndrez M; Domínguez M; Marzialetti T; Báez R; Sánchez-Sanhueza G; Jaramillo A; Catalán A
    Saudi Dent J; 2021 Dec; 33(8):944-953. PubMed ID: 34938036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced photoluminescence and photoconductivity of ZnO nanowires with sputtered Zn.
    Bera A; Ghosh T; Basak D
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2898-903. PubMed ID: 20919682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations.
    Boubenia S; Dahiya AS; Poulin-Vittrant G; Morini F; Nadaud K; Alquier D
    Sci Rep; 2017 Nov; 7(1):15187. PubMed ID: 29123216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.