These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36132304)

  • 1. Mechanically durable and long-term repairable flexible lubricant-infused monomer for enhancing water collection efficiency by manipulating droplet coalescence and sliding.
    Zhou H; Jing X; Guo Z
    Nanoscale Adv; 2020 Apr; 2(4):1473-1482. PubMed ID: 36132304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability.
    Jing X; Guo Z
    Nanoscale; 2019 May; 11(18):8870-8881. PubMed ID: 31012900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Durable Lubricant-Impregnated Surfaces for Water Collection under Extremely Severe Working Conditions.
    Jing X; Guo Z
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35949-35958. PubMed ID: 31411451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Fabrication of Slippery Lubricant-Infused CuO-Coated Surfaces with Different Morphologies for Efficient Water Collection and Excellent Slippery Stability.
    Gou X; Guo Z
    Langmuir; 2020 Aug; 36(30):8983-8992. PubMed ID: 32663019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WO
    Fan H; Guo Z
    J Colloid Interface Sci; 2021 Jun; 591():418-428. PubMed ID: 33631529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Water Nucleation and Growth Based on Microdroplet Mobility on Lubricant-Infused Surfaces.
    Sun J; Jiang X; Weisensee PB
    Langmuir; 2021 Nov; 37(44):12790-12801. PubMed ID: 34699236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H; Tenjimbayashi M; Moriya T; Yoshikawa R; Sasaki K; Togasawa R; Yamazaki T; Manabe K; Shiratori S
    Langmuir; 2017 Sep; 33(36):8950-8960. PubMed ID: 28826213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Condensation of Satellite Droplets on Lubricant-Cloaked Droplets.
    Ge Q; Raza A; Li H; Sett S; Miljkovic N; Zhang T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22246-22255. PubMed ID: 32306727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lubricant-Mediated Strong Droplet Adhesion on Lubricant-Impregnated Surfaces.
    Li J; Li W; Tang X; Han X; Wang L
    Langmuir; 2021 Jul; 37(28):8607-8615. PubMed ID: 34213350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disjoining pressure analysis of the lubricant nanofilm stability of liquid-infused surface upon lubricant depletion.
    Emelyanenko KA; Emelyanenko AM; Boinovich LB
    J Colloid Interface Sci; 2022 Jul; 618():121-128. PubMed ID: 35334360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets.
    Adera S; Alvarenga J; Shneidman AV; Zhang CT; Davitt A; Aizenberg J
    ACS Nano; 2020 Jul; 14(7):8024-8035. PubMed ID: 32490664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Sorting and Manipulation on Patterned Two-Phase Slippery Lubricant-Infused Surface.
    Paulssen D; Hardt S; Levkin PA
    ACS Appl Mater Interfaces; 2019 May; 11(17):16130-16138. PubMed ID: 30932477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dropwise Condensation in Ambient on a Depleted Lubricant-Infused Surface.
    Ranjan D; Chaudhary M; Zou A; Maroo SC
    ACS Appl Mater Interfaces; 2023 May; 15(17):21679-21689. PubMed ID: 37079801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slippery Antifouling Polysiloxane-Polyurea Surfaces with Matrix Self-Healing and Lubricant Self-Replenishing.
    Yu M; Liu M; Fu S
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32149-32160. PubMed ID: 34212721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-Induced Long-Term Stable Slippery Surfaces.
    Baumli P; Teisala H; Bauer H; Garcia-Gonzalez D; Damle V; Geyer F; D'Acunzi M; Kaltbeitzel A; Butt HJ; Vollmer D
    Adv Sci (Weinh); 2019 Jun; 6(11):1900019. PubMed ID: 31179214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdroplet self-propulsion during dropwise condensation on lubricant-infused surfaces.
    Sun J; Weisensee PB
    Soft Matter; 2019 Jun; 15(24):4808-4817. PubMed ID: 31089647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicone Oil-Infused Slippery Surfaces Based on Sol-Gel Process-Induced Nanocomposite Coatings: A Facile Approach to Highly Stable Bioinspired Surface for Biofouling Resistance.
    Wei C; Zhang G; Zhang Q; Zhan X; Chen F
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34810-34819. PubMed ID: 27998125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting.
    Feng R; Xu C; Song F; Wang F; Wang XL; Wang YZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12373-12381. PubMed ID: 32048819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.