These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36132344)

  • 1. Ultrabright fluorescent nanothermometers.
    Kalaparthi V; Peng B; Peerzade SAMA; Palantavida S; Maloy B; Dokukin ME; Sokolov I
    Nanoscale Adv; 2021 Aug; 3(17):5090-5101. PubMed ID: 36132344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrabright fluorescent silica particles with a large number of complex spectra excited with a single wavelength for multiplex applications.
    Palantavida S; Peng B; Sokolov I
    Nanoscale; 2017 Apr; 9(15):4881-4890. PubMed ID: 28177010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrabright Fluorescent Silica Nanoparticles for Multiplexed Detection.
    Peerzade SAMA; Makarova N; Sokolov I
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrabright Fluorescent Silica Nanoparticles for Dual pH and Temperature Measurements.
    Peerzade SAMA; Makarova N; Sokolov I
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34207605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the Use of Individual Fluorescent Nanoparticles as Ratiometric Sensors: Spectral Robustness of Ultrabright Nanoporous Silica Nanoparticles.
    Iraniparast M; Peng B; Sokolov I
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ultrabright nanoporous fluorescent silica discoids using an inorganic silica precursor.
    Volkov DO; Cho EB; Sokolov I
    Nanoscale; 2011 May; 3(5):2036-43. PubMed ID: 21479304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Ratiometric Fluorescent Nanothermometers Based on Fluorophores-Labeled Short Single-Stranded DNA.
    Wu Y; Liu J; Wang Y; Li K; Li L; Xu J; Wu D
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11073-11081. PubMed ID: 28263548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal guidelines for the conversion of proteins and dyes into functional nanothermometers.
    Spicer G; Efeyan A; Adam AP; Thompson SA
    J Biophotonics; 2019 Sep; 12(9):e201900044. PubMed ID: 31034763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of fluorescent nanocapsules as ratiometric nanothermometers.
    Zhegalova NG; Dergunov SA; Wang ST; Pinkhassik E; Berezin MY
    Chemistry; 2014 Aug; 20(33):10292-7. PubMed ID: 25044240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry.
    Wu Y; Liu J; Ma J; Liu Y; Wang Y; Wu D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14396-405. PubMed ID: 27197838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Response of Rhodamine B-Doped Latex Particles. From Solution to Single Particles.
    Soleilhac A; Girod M; Dugourd P; Burdin B; Parvole J; Dugas PY; Bayard F; Lacôte E; Bourgeat-Lami E; Antoine R
    Langmuir; 2016 Apr; 32(16):4052-8. PubMed ID: 27042942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids.
    Brites CD; Lima PP; Silva NJ; Millán A; Amaral VS; Palacio F; Carlos LD
    Nanoscale; 2013 Aug; 5(16):7572-80. PubMed ID: 23835484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature sensing using fluorescent nanothermometers.
    Vetrone F; Naccache R; Zamarrón A; Juarranz de la Fuente A; Sanz-Rodríguez F; Martinez Maestro L; Martín Rodriguez E; Jaque D; García Solé J; Capobianco JA
    ACS Nano; 2010 Jun; 4(6):3254-8. PubMed ID: 20441184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing DNA for nanothermometry.
    Spicer G; Gutierrez-Erlandsson S; Matesanz R; Bernard H; Adam AP; Efeyan A; Thompson S
    J Biophotonics; 2021 Feb; 14(2):e202000341. PubMed ID: 33128802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrabright fluorescent mesoporous silica nanoparticles.
    Cho EB; Volkov DO; Sokolov I
    Small; 2010 Oct; 6(20):2314-9. PubMed ID: 20859948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells.
    Tao L; Song C; Sun Y; Li X; Li Y; Jin B; Zhang Z; Yang K
    Anal Chim Acta; 2013 Jan; 761():194-200. PubMed ID: 23312331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ga filled nanothermometers with high sensitivity and wide measuring range.
    Su J; Sun M; Zhang X; Huang Y; Gao Y
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6397-400. PubMed ID: 22962755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.