These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36132368)

  • 1. Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum.
    Li M; Yan S; Zhang Y; Chen X; Yao B
    Nanoscale Adv; 2021 Dec; 3(24):6897-6902. PubMed ID: 36132368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral nanoparticle separation and discrimination using radially polarized circular Airy vortex beams with orbital-induced spin angular momentum.
    Wu H; Wang T; Hu Y
    Phys Chem Chem Phys; 2024 Mar; 26(11):8775-8783. PubMed ID: 38420742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and separation of chiral particles by focused circularly polarized vortex beams.
    Zhang Y; Li M; Yan S; Zhou Y; Gao W; Yao B
    J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1371-1377. PubMed ID: 36215580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Encryption in the Photonic Orbital Angular Momentum Dimension via Direct-Laser-Writing 3D Chiral Metahelices.
    Liu S; Wang X; Ni J; Cao Y; Li J; Wang C; Hu Y; Chu J; Wu D
    Nano Lett; 2023 Mar; 23(6):2304-2311. PubMed ID: 36880306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving enantiomers using the optical angular momentum of twisted light.
    Brullot W; Vanbel MK; Swusten T; Verbiest T
    Sci Adv; 2016 Mar; 2(3):e1501349. PubMed ID: 26998517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angular momentum separation in focused fractional vector beams for optical manipulation.
    Gu B; Hu Y; Zhang X; Li M; Zhu Z; Rui G; He J; Cui Y
    Opt Express; 2021 May; 29(10):14705-14719. PubMed ID: 33985187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical grinder: sorting of trapped particles by orbital angular momentum.
    Bobkova V; Stegemann J; Droop R; Otte E; Denz C
    Opt Express; 2021 Apr; 29(9):12967-12975. PubMed ID: 33985042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Majorana vortex photons a form of entangled photons propagation through brain tissue.
    Mamani S; Shi L; Nolan D; Alfano R
    J Biophotonics; 2019 Oct; 12(10):e201900036. PubMed ID: 31162813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interparticle-Interaction-Mediated Anomalous Acceleration of Nanoparticles under Light-Field with Coupled Orbital and Spin Angular Momentum.
    Tamura M; Omatsu T; Tokonami S; Iida T
    Nano Lett; 2019 Aug; 19(8):4873-4878. PubMed ID: 31272154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.
    Li M; Yan S; Yao B; Liang Y; Zhang P
    Opt Express; 2016 Sep; 24(18):20604-12. PubMed ID: 27607664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of controllable chiral optical fields by vector beams.
    Li M; Yan S; Zhang Y; Yao B
    Nanoscale; 2020 Jul; 12(28):15453-15459. PubMed ID: 32666994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.
    Zheng S; Wang J
    Sci Rep; 2017 Jan; 7():40781. PubMed ID: 28094325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of the Larmor and Gouy rotations with electron vortex beams.
    Guzzinati G; Schattschneider P; Bliokh KY; Nori F; Verbeeck J
    Phys Rev Lett; 2013 Mar; 110(9):093601. PubMed ID: 23496708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics.
    Sun W; Hu Y; Weimer C; Ayers K; Baize RR; Lee T
    J Quant Spectrosc Radiat Transf; 2017 Feb; 188():200-213. PubMed ID: 32440026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles.
    Zhang Q; Liu Z; Cheng Z
    Nanomaterials (Basel); 2023 Aug; 13(15):. PubMed ID: 37570568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform intensity chiral optical field by multifocal synthesis.
    Wang D; Li Y; Liu R; Sun L; Deng D; Liu Y
    Opt Lett; 2024 Jul; 49(14):3890-3893. PubMed ID: 39008734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum.
    Ni J; Liu S; Hu G; Hu Y; Lao Z; Li J; Zhang Q; Wu D; Dong S; Chu J; Qiu CW
    ACS Nano; 2021 Feb; 15(2):2893-2900. PubMed ID: 33497201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orbital-Angular-Momentum Mode Selection by Rotationally Symmetric Superposition of Chiral States with Application to Electron Vortex Beams.
    Yang Y; Thirunavukkarasu G; Babiker M; Yuan J
    Phys Rev Lett; 2017 Sep; 119(9):094802. PubMed ID: 28949569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light.
    Wu T; Wang R; Zhang X
    Sci Rep; 2015 Dec; 5():18003. PubMed ID: 26656892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved enantiomer-exchange probed by using the orbital angular momentum of X-ray light.
    Jiang X; Nam Y; Rouxel JR; Yong H; Mukamel S
    Chem Sci; 2023 Oct; 14(40):11067-11075. PubMed ID: 37860657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.