These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36132398)
1. Mechanical force-induced manipulation of electronic conductance in a spin-crossover complex: a simple approach to molecular electronics. Sarmah A; Hobza P Nanoscale Adv; 2020 Jul; 2(7):2907-2913. PubMed ID: 36132398 [TBL] [Abstract][Full Text] [Related]
2. Stretching-Induced Conductance Increase in a Spin-Crossover Molecule. Frisenda R; Harzmann GD; Celis Gil JA; Thijssen JM; Mayor M; van der Zant HS Nano Lett; 2016 Aug; 16(8):4733-7. PubMed ID: 27088578 [TBL] [Abstract][Full Text] [Related]
3. Binding structure, breaking forces and conductance of Au-Octanedithiol-Au molecular junction under stretching processes: a DFT-NEGF study. Guan SY; Cai ZY; Ma ZW; Wu DY; Tian ZQ Nanotechnology; 2022 Dec; 34(9):. PubMed ID: 36541478 [TBL] [Abstract][Full Text] [Related]
4. Transport property of ligand-driven light-induced spin-change Fe-based spin crossover complexes. Li F; Huang J; Hu Y; Li Q RSC Adv; 2019 Apr; 9(22):12339-12345. PubMed ID: 35515830 [TBL] [Abstract][Full Text] [Related]
5. Crystallographic elucidation of purely structural, thermal and light-induced spin transitions in an iron(II) binuclear complex. Kaiba A; Shepherd HJ; Fedaoui D; Rosa P; Goeta AE; Rebbani N; Létard JF; Guionneau P Dalton Trans; 2010 Mar; 39(11):2910-8. PubMed ID: 20200719 [TBL] [Abstract][Full Text] [Related]
6. Deposition of the Spin Crossover Fe Montenegro-Pohlhammer N; Sánchez-de-Armas R; Calzado CJ Chemistry; 2021 Jan; 27(2):712-723. PubMed ID: 32876974 [TBL] [Abstract][Full Text] [Related]
7. Coherent transport through spin-crossover magnet Fe2 complexes. Huang J; Xie R; Wang W; Li Q; Yang J Nanoscale; 2016 Jan; 8(1):609-16. PubMed ID: 26647165 [TBL] [Abstract][Full Text] [Related]
8. Computational demonstration of isomer- and spin-state-dependent charge transport in molecular junctions composed of charge-neutral iron(II) spin-crossover complexes. Montenegro-Pohlhammer N; Kuppusamy SK; Cárdenas-Jirón G; Calzado CJ; Ruben M Dalton Trans; 2023 Jan; 52(5):1229-1240. PubMed ID: 36606462 [TBL] [Abstract][Full Text] [Related]
9. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport. Aragonès AC; Aravena D; Cerdá JI; Acís-Castillo Z; Li H; Real JA; Sanz F; Hihath J; Ruiz E; Díez-Pérez I Nano Lett; 2016 Jan; 16(1):218-26. PubMed ID: 26675052 [TBL] [Abstract][Full Text] [Related]
10. Hapticity-dependent charge transport through carbodithioate-terminated [5,15-bis(phenylethynyl)porphinato]zinc(II) complexes in metal-molecule-metal junctions. Li Z; Smeu M; Park TH; Rawson J; Xing Y; Therien MJ; Ratner MA; Borguet E Nano Lett; 2014 Oct; 14(10):5493-9. PubMed ID: 25255444 [TBL] [Abstract][Full Text] [Related]
11. A photo-induced spin crossover based molecular switch and spin filter operating at room temperature. Montenegro-Pohlhammer N; Sánchez-de-Armas R; Calzado CJ; Borges-Martínez M; Cárdenas-Jirón G Dalton Trans; 2021 May; 50(19):6578-6587. PubMed ID: 33899067 [TBL] [Abstract][Full Text] [Related]
12. Near-Perfect Spin Filtering and Negative Differential Resistance in an Fe(II)S Complex. Tawfik SA; Weston L; Cui XY; Ringer SP; Stampfl C J Phys Chem Lett; 2017 May; 8(10):2189-2194. PubMed ID: 28457138 [TBL] [Abstract][Full Text] [Related]
13. Electronic and spin transport properties of graphene nanoribbon mediated by metal adatoms: a study by the QUAMBO-NEGF approach. Zhang GP; Liu X; Wang CZ; Yao YX; Zhang J; Ho KM J Phys Condens Matter; 2013 Mar; 25(10):105302. PubMed ID: 23399804 [TBL] [Abstract][Full Text] [Related]
15. Negative Differential Resistance in Spin-Crossover Molecular Devices. Li D; Tong Y; Bairagi K; Kelai M; Dappe YJ; Lagoute J; Girard Y; Rousset S; Repain V; Barreteau C; Brandbyge M; Smogunov A; Bellec A J Phys Chem Lett; 2022 Aug; 13(32):7514-7520. PubMed ID: 35944010 [TBL] [Abstract][Full Text] [Related]
16. Perfect Spin Filtering in Homobimetallic Ni Complex with High Tolerance to Structural Changes. Jiang Y; Wei Y; Wang Y; Ngeywo KT; Hu Y; Wang S; Pang K; Zhang G; Li W; Jiang Y J Phys Chem Lett; 2019 Dec; 10(24):7842-7849. PubMed ID: 31779311 [TBL] [Abstract][Full Text] [Related]
17. Single-Molecule Spin Switch Based on Voltage-Triggered Distortion of the Coordination Sphere. Harzmann GD; Frisenda R; van der Zant HS; Mayor M Angew Chem Int Ed Engl; 2015 Nov; 54(45):13425-30. PubMed ID: 26426777 [TBL] [Abstract][Full Text] [Related]
18. Ligand strain and the nature of spin crossover in binuclear complexes: two-step spin crossover in a 4,4'-bipyridine-bridged iron(II) complex [{Fe(dpia)(NCS)(2)}(2)(4,4'-bpy)] (dpia = di(2-picolyl)amine; 4,4'-bpy = 4,4'-bipyridine). Verat AY; Ould-Moussa N; Jeanneau E; Le Guennic B; Bousseksou A; Borshch SA; Matouzenko GS Chemistry; 2009 Oct; 15(39):10070-82. PubMed ID: 19711383 [TBL] [Abstract][Full Text] [Related]
19. Structure and electronic configuration of an iron(II) complex in a LIESST state: a pump and probe method. Sheu CF; Chen K; Chen SM; Wen YS; Lee GH; Chen JM; Lee JF; Cheng BM; Sheu HS; Yasuda N; Ozawa Y; Toriumi K; Wang Y Chemistry; 2009; 15(10):2384-93. PubMed ID: 19142936 [TBL] [Abstract][Full Text] [Related]
20. Fe(II) complex with the octadentate btpa ligand: a DFT study on a spin-crossover system that reveals two distinct high-spin states. Wolny JA; Paulsen H; McGarvey JJ; Diller R; Schünemann V; Toftlund H Phys Chem Chem Phys; 2009 Sep; 11(35):7562-75. PubMed ID: 19950494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]