BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36132465)

  • 1. Fluorescent microsphere probe for rapid qualitative and quantitative detection of trypsin activity.
    Song L; Zhang L; Xu K; Huang Y; Gao P; Fang H; Zhang J; Nie Z; Chen T
    Nanoscale Adv; 2019 Jan; 1(1):162-167. PubMed ID: 36132465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide modified manganese-doped iron oxide nanoparticles as a sensitive fluorescence nanosensor for non-invasive detection of trypsin activity
    Fu Y; Liu L; Li X; Chen H; Wang Z; Yang W; Zhang H; Zhang H
    RSC Adv; 2021 Jan; 11(4):2213-2220. PubMed ID: 35424166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of poly(glycidyl methacrylate-divinylbenzene) porous microspheres with polyethylene glycol and their adsorption property of protein.
    Wang R; Zhang Y; Ma G; Su Z
    Colloids Surf B Biointerfaces; 2006 Aug; 51(1):93-9. PubMed ID: 16824738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and evaluation of fluorescent poly(p-phenyleneethylene) covalently coated microspheres with reactive sites for bioconjugation.
    Sun L; Xu H; Shao Y; Liu J; Fan LJ
    J Colloid Interface Sci; 2019 Mar; 540():362-370. PubMed ID: 30660793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A carbon nanoparticle-peptide fluorescent sensor custom-made for simple and sensitive detection of trypsin.
    Hou S; Feng T; Zhao N; Zhang J; Wang H; Liang N; Zhao L
    J Pharm Anal; 2020 Oct; 10(5):482-489. PubMed ID: 33133732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [In-site electrophoretic elution of excessive fluorescein isothiocyanate from fluorescent particles in gel for image analysis].
    Chen G; Guo Z; Cao Y; Fan L; Liu W; Ma Y; Cao C; Zhang Q
    Se Pu; 2022 Jul; 40(7):610-615. PubMed ID: 35791599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-concentration trypsin detection from a metal-enhanced fluorescence (MEF) platform: Towards the development of ultra-sensitive and rapid detection of proteolytic enzymes.
    Lucas E; Knoblauch R; Combs-Bosse M; Broedel SE; Geddes CD
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117739. PubMed ID: 31753644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step homogeneous micro-orifice resistance immunoassay for detection of chlorpyrifos in orange samples.
    Ren L; Feng W; Hong F; Wang Z; Huang H; Chen Y
    Food Chem; 2022 Aug; 386():132712. PubMed ID: 35339078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel.
    Russell RJ; Pishko MV; Gefrides CC; McShane MJ; Coté GL
    Anal Chem; 1999 Aug; 71(15):3126-32. PubMed ID: 10450158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescein isothiocyanate specifically modifies lysine 338 of cytochrome P-450scc and inhibits adrenodoxin binding.
    Tuls J; Geren L; Millett F
    J Biol Chem; 1989 Oct; 264(28):16421-5. PubMed ID: 2506177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A selective and sensitive fluorescent probe for the determination of HSA and trypsin.
    Huang S; Li F; Liao C; Zheng B; Du J; Xiao D
    Talanta; 2017 Aug; 170():562-568. PubMed ID: 28501212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the protease fluorescent detection kit to determine protease activity.
    Cupp-Enyard C
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19684562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new standard fluorescence microsphere for quantitative flow cytometry.
    Oonishi T; Uyesaka N
    J Immunol Methods; 1985 Nov; 84(1-2):143-54. PubMed ID: 3934282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay.
    Liu JM; Lin LP; Jiao L; Cui ML; Wang XX; Zhang LH; Zheng ZY
    Talanta; 2012 Aug; 98():137-44. PubMed ID: 22939139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sensitive and rapid detection of glutathione based on a fluorescence-enhanced "turn-on" strategy.
    Ma Q; Wang M; Cai H; Li F; Fu S; Liu Y; Zhao Y
    J Mater Chem B; 2021 Apr; 9(16):3563-3572. PubMed ID: 33909744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-free catalytic hairpin assembly reaction-mediated micro-orifice resistance assay for the ultrasensitive and low-cost detection of Listeria monocytogenes.
    Ren L; Hong F; Chen Y
    Biosens Bioelectron; 2022 Oct; 214():114490. PubMed ID: 35793606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer fluorescence optically encoded beads for protein detection.
    Jun BH; Rho C; Byun JW; Kim JH; Chung WJ; Kang H; Park J; Cho SH; Kim BG; Lee YS
    Anal Biochem; 2010 Jan; 396(2):313-5. PubMed ID: 19766091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel fluorescent substrates for detection of trypsin activity and inhibitor screening by self-quenching.
    Sato D; Kato T
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5736-5740. PubMed ID: 27810242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157:H7 in food samples.
    Song C; Liu J; Li J; Liu Q
    Biosens Bioelectron; 2016 Nov; 85():734-739. PubMed ID: 27266657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder.
    Zhao Y; Luo W; Kanda P; Cheng H; Chen Y; Wang S; Huan S
    Talanta; 2013 Sep; 113():7-13. PubMed ID: 23708616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.