BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36132491)

  • 1. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of the
    Chang X; Zhang J; Liu Z; Luo Z; Chen L; Wang J; Geng F
    Curr Res Food Sci; 2022; 5():1494-1507. PubMed ID: 36132491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative N-Glycoproteomic Analysis of Cattle-Yak and Yak
    Chang X; Wang J; Harlina PW; Geng F
    J Agric Food Chem; 2023 Aug; 71(30):11740-11750. PubMed ID: 37471694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomic analysis of cattle-yak and yak longissimus thoracis provides insights into the differential mechanisms of meat quality.
    Chang X; Xu Y; Cheng L; Yi K; Gu X; Luo Z; Zhang J; Wang J; Geng F
    Food Res Int; 2023 Nov; 173(Pt 1):113253. PubMed ID: 37803567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions.
    Chen X; Song X; Li J; Wang J; Yan Y; Yang F
    Cell Commun Signal; 2024 May; 22(1):273. PubMed ID: 38755675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem.
    Huang H; Larsen MR; Palmisano G; Dai J; Lametsch R
    J Proteomics; 2014 Jun; 106():125-39. PubMed ID: 24769528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative testis proteome dataset between cattleyak and yak.
    Yang F; Mipam T; Sun L; Yu S; Cai X
    Data Brief; 2016 Sep; 8():420-5. PubMed ID: 27366779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Understanding the Genetic Basis of Yak Ovary Reproduction: A Characterization and Comparative Analyses of Estrus Ovary Transcriptiome in Yak and Cattle.
    Lan D; Xiong X; Huang C; Mipam TD; Li J
    PLoS One; 2016; 11(4):e0152675. PubMed ID: 27044040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of spleen reveals key immune-related proteins in the yak (Bos grunniens) at different growth stages.
    Zheng Y; Guan J; Wang L; Luo X; Zhang X
    Comp Biochem Physiol Part D Genomics Proteomics; 2022 Jun; 42():100968. PubMed ID: 35150973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Extent and Rate of the Appearance of the Major 110 and 30 kDa Proteolytic Fragments during Post-Mortem Aging of Beef Depend on the Glycolysing Rate of the Muscle and Aging Time: An LC-MS/MS Approach to Decipher Their Proteome and Associated Pathways.
    Gagaoua M; Troy D; Mullen AM
    J Agric Food Chem; 2021 Jan; 69(1):602-614. PubMed ID: 33377770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle proteome analysis provides insights on high altitude adaptation of yaks.
    Wen W; Zhao Z; Li R; Guan J; Zhou Z; Luo X; Suman SP; Sun Q
    Mol Biol Rep; 2019 Jun; 46(3):2857-2866. PubMed ID: 30982215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Lipids in Yak Muscle under Different Feeding Systems on Meat Quality Based on Untargeted Lipidomics.
    Xiong L; Pei J; Wang X; Guo S; Guo X; Yan P
    Animals (Basel); 2022 Oct; 12(20):. PubMed ID: 36290199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress.
    Mato A; Rodríguez-Vázquez R; López-Pedrouso M; Bravo S; Franco D; Zapata C
    BMC Genomics; 2019 Jul; 20(1):590. PubMed ID: 31315554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serum Metabolomic Analysis of Synchronous Estrus in Yaks Based on UPLC-Q-TOF MS Technology.
    Feng F; Huang C; Luosang D; Ma X; La Y; Wu X; Guo X; Pingcuo Z; Liang C
    Animals (Basel); 2024 May; 14(10):. PubMed ID: 38791618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative phosphoproteomic analysis of caprine muscle with high and low meat quality.
    Liu M; Wei Y; Li X; Quek SY; Zhao J; Zhong H; Zhang D; Liu Y
    Meat Sci; 2018 Jul; 141():103-111. PubMed ID: 29580736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global profiling of the proteome, phosphoproteome, and N-glycoproteome of protoscoleces and adult worms of
    Wang Z; Jia X; Ma J; Zhang Y; Sun Y; Bo X
    Front Vet Sci; 2023; 10():1275486. PubMed ID: 38026665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-depth mapping of the proteome of Tibetan pig tenderloin (longissimus dorsi) using offline high-pH reversed-phase fractionation and LC-MS/MS.
    Gu X; Gao Y; Luo Z; Yang L; Chi F; Xiao J; Wang W; Geng F
    J Food Biochem; 2019 Nov; 43(11):e13015. PubMed ID: 31429109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoproteomic analysis of longissimus lumborum of different altitude yaks.
    Yang Y; Han L; Yu Q; Gao Y; Song R; Zhao S
    Meat Sci; 2020 Apr; 162():108019. PubMed ID: 31887536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary Energy Levels Affect Carbohydrate Metabolism-Related Bacteria and Improve Meat Quality in the
    Du M; Yang C; Liang Z; Zhang J; Yang Y; Ahmad AA; Yan P; Ding X
    Front Vet Sci; 2021; 8():718036. PubMed ID: 34631849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-depth mapping of the seed phosphoproteome and N-glycoproteome of Tartary buckwheat (Fagopyrum tataricum) using off-line high pH RPLC fractionation and nLC-MS/MS.
    Geng F; Liu X; Wang J; He R; Zhao J; Xiang D; Zou L; Peng L; Zhao G
    Int J Biol Macromol; 2019 Sep; 137():688-696. PubMed ID: 31279882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic N-glycoproteome analysis of maize seedling leaves during de-etiolation using Concanavalin A lectin affinity chromatography and a nano-LC-MS/MS-based iTRAQ approach.
    Bu TT; Shen J; Chao Q; Shen Z; Yan Z; Zheng HY; Wang BC
    Plant Cell Rep; 2017 Dec; 36(12):1943-1958. PubMed ID: 28942497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.