These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36132495)

  • 1. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement.
    Al Masud A; Martin WE; Moonschi FH; Park SM; Srijanto BR; Graham KR; Collier CP; Richards CI
    Nanoscale Adv; 2020 May; 2(5):1894-1903. PubMed ID: 36132495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides.
    Martin WE; Srijanto BR; Collier CP; Vosch T; Richards CI
    J Phys Chem A; 2016 Sep; 120(34):6719-27. PubMed ID: 27499174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET enhancement in aluminum zero-mode waveguides.
    de Torres J; Ghenuche P; Moparthi SB; Grigoriev V; Wenger J
    Chemphyschem; 2015 Mar; 16(4):782-8. PubMed ID: 25640052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Zero Mode Waveguides for High Concentration Single Molecule Microscopy.
    Chen KY; Jamiolkowski RM; Tate AM; Fiorenza SA; Pfeil SH; Goldman YE
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold Ion Beam Milled Gold Zero-Mode Waveguides.
    Messina TC; Srijanto BR; Collier CP; Kravchenko II; Richards CI
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet.
    Baibakov M; Barulin A; Roy P; Claude JB; Patra S; Wenger J
    Nanoscale Adv; 2020 Sep; 2(9):4153-4160. PubMed ID: 36132755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero-Mode Waveguide Nanophotonic Structures for Single Molecule Characterization.
    Crouch GM; Han D; Bohn PW
    J Phys D Appl Phys; 2018 May; 51(19):193001. PubMed ID: 34158676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Effective Complex Loading into Zero-Mode Waveguides Optimized with Fluorescence Evaluation at Quenching and Accumulation Checkpoints.
    Wang L; Zang P; Li J; Zhang Z; Li C; Zheng A; Zhao S; Yao J; Li C; Guo Z; Zhang W; Zhou L
    ACS Appl Mater Interfaces; 2024 May; 16(20):25676-25685. PubMed ID: 38742765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palladium zero-mode waveguides for optical single-molecule detection with nanopores.
    Klughammer N; Dekker C
    Nanotechnology; 2021 Apr; 32(18):18LT01. PubMed ID: 33412532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis.
    Jamiolkowski RM; Chen KY; Fiorenza SA; Tate AM; Pfeil SH; Goldman YE
    PLoS One; 2019; 14(10):e0222964. PubMed ID: 31600217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steering Fluorescence Emission with Metal-Dielectric-Metal Structures of Au, Ag and Al.
    Dutta Choudhury S; Badugu R; Ray K; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2013 Aug; 117(30):15798-15807. PubMed ID: 25126154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing.
    Teng CH; Lionberger TA; Zhang J; Meyhöfer E; Ku PC
    Nanotechnology; 2012 Nov; 23(45):455301. PubMed ID: 23085680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-controlled fluorescence and single DNA strand sequenching.
    Akbay N; Ray K; Chowdhury MH; Lakowicz JR
    Proc SPIE Int Soc Opt Eng; 2012 Sep; 8234():82340M. PubMed ID: 24027614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak.
    Sarkar S; Kanchibotla B; Nelson JD; Edwards JD; Anderson J; Tepper GC; Bandyopadhyay S
    Nano Lett; 2014 Oct; 14(10):5973-8. PubMed ID: 25233371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods.
    Zhao L; Ming T; Chen H; Liang Y; Wang J
    Nanoscale; 2011 Sep; 3(9):3849-59. PubMed ID: 21826320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver-Gold Nanocomposite Substrates for Metal-Enhanced Fluorescence: Ensemble and Single-Molecule Spectroscopic Studies.
    Choudhury SD; Badugu R; Ray K; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2012 Mar; 116(8):5042-5048. PubMed ID: 22707999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells.
    Yang S; Klughammer N; Barth A; Tanenbaum ME; Dekker C
    ACS Nano; 2023 Oct; 17(20):20179-20193. PubMed ID: 37791900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays.
    Bochenkov VE; Lobanova EM; Shakhov AM; Astafiev AA; Bogdanov AM; Timoshenko VA; Bochenkova AV
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33419362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Range Single-Molecule Förster Resonance Energy Transfer between Alexa Dyes in Zero-Mode Waveguides.
    Baibakov M; Patra S; Claude JB; Wenger J
    ACS Omega; 2020 Mar; 5(12):6947-6955. PubMed ID: 32258931
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.