These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36132631)

  • 1. High-rate transition metal-based cathode materials for battery-supercapacitor hybrid devices.
    Wang C; Song Z; Shi P; Lv L; Wan H; Tao L; Zhang J; Wang H; Wang H
    Nanoscale Adv; 2021 Sep; 3(18):5222-5239. PubMed ID: 36132631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layered Oxide Cathodes for Sodium-Ion Batteries: Storage Mechanism, Electrochemistry, and Techno-economics.
    Zuo W; Innocenti A; Zarrabeitia M; Bresser D; Yang Y; Passerini S
    Acc Chem Res; 2023 Feb; 56(3):284-296. PubMed ID: 36696961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects.
    Zuo W; Li R; Zhou C; Li Y; Xia J; Liu J
    Adv Sci (Weinh); 2017 Jul; 4(7):1600539. PubMed ID: 28725528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overview of transition metal-based composite materials for supercapacitor electrodes.
    Cui M; Meng X
    Nanoscale Adv; 2020 Dec; 2(12):5516-5528. PubMed ID: 36133879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.
    Cabana J; Kwon BJ; Hu L
    Acc Chem Res; 2018 Feb; 51(2):299-308. PubMed ID: 29384354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors.
    Malavekar D; Pujari S; Jang S; Bachankar S; Kim JH
    Small; 2024 Apr; ():e2312179. PubMed ID: 38593336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations.
    Chen Z; Zhang W; Yang Z
    Nanotechnology; 2020 Jan; 31(1):012001. PubMed ID: 31519017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.
    Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J
    Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage.
    Sun Y; Sun J; Sanchez JS; Xia Z; Xiao L; Chen R; Palermo V
    Chem Commun (Camb); 2023 Feb; 59(18):2571-2583. PubMed ID: 36749576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium-rich nickel cobalt bimetallic selenides with core-shell architecture enable superior hybrid energy storage devices.
    Liu YL; Yan C; Wang GG; Li F; Kang Q; Zhang HY; Han JC
    Nanoscale; 2020 Feb; 12(6):4040-4050. PubMed ID: 32016240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancements in Manganese-based Cathode for Sustainable Energy Utilization.
    Zhou T; Wu B; Li C; Zhang X; Li W; Pang H
    ChemSusChem; 2024 Jun; ():e202400890. PubMed ID: 38924355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na
    Zhang X; Rui X; Chen D; Tan H; Yang D; Huang S; Yu Y
    Nanoscale; 2019 Feb; 11(6):2556-2576. PubMed ID: 30672554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Review on Strategies for Enhancing the Performance of Polyanionic-Based Sodium-Ion Battery Cathodes.
    Joy A; Kumari K; Parween F; Sultana MS; Nayak GC
    ACS Omega; 2024 May; 9(21):22509-22531. PubMed ID: 38826530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.