These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36132636)
1. Radio frequency heating and material processing using carbon susceptors. Vashisth A; Upama ST; Anas M; Oh JH; Patil N; Green MJ Nanoscale Adv; 2021 Sep; 3(18):5255-5264. PubMed ID: 36132636 [TBL] [Abstract][Full Text] [Related]
2. Radio Frequency Heating of Carbon Nanotube Composite Materials. Sweeney CB; Moran AG; Gruener JT; Strasser AM; Pospisil MJ; Saed MA; Green MJ ACS Appl Mater Interfaces; 2018 Aug; 10(32):27252-27259. PubMed ID: 30039965 [TBL] [Abstract][Full Text] [Related]
3. Rapid Heating of Silicon Carbide Fibers under Radio Frequency Fields and Application in Curing Preceramic Polymer Composites. Patil N; Zhao X; Mishra NK; Saed MA; Radovic M; Green MJ ACS Appl Mater Interfaces; 2019 Dec; 11(49):46132-46139. PubMed ID: 31730325 [TBL] [Abstract][Full Text] [Related]
4. Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes. Anas M; Zhao Y; Saed MA; Ziegler KJ; Green MJ Nanoscale; 2019 May; 11(19):9617-9625. PubMed ID: 31065650 [TBL] [Abstract][Full Text] [Related]
5. Heating of Ti Habib T; Patil N; Zhao X; Prehn E; Anas M; Lutkenhaus JL; Radovic M; Green MJ Sci Rep; 2019 Nov; 9(1):16489. PubMed ID: 31712667 [TBL] [Abstract][Full Text] [Related]
6. Graphene synthesis via magnetic inductive heating of copper substrates. Piner R; Li H; Kong X; Tao L; Kholmanov IN; Ji H; Lee WH; Suk JW; Ye J; Hao Y; Chen S; Magnuson CW; Ismach AF; Akinwande D; Ruoff RS ACS Nano; 2013 Sep; 7(9):7495-9. PubMed ID: 23930903 [TBL] [Abstract][Full Text] [Related]
7. Pattern-Dependent Radio Frequency Heating of Laser-Induced Graphene Flexible Heaters. Mahbub H; Saed MA; Malmali M ACS Appl Mater Interfaces; 2023 Apr; 15(14):18074-18086. PubMed ID: 36976839 [TBL] [Abstract][Full Text] [Related]
8. Cardiac tissue ablation with catheter-based microwave heating. Rappaport C Int J Hyperthermia; 2004 Nov; 20(7):769-80. PubMed ID: 15675671 [TBL] [Abstract][Full Text] [Related]
9. Accelerated Curing and Enhanced Material Properties of Conductive Polymer Nanocomposites by Joule Heating. Jang SH; Kim D; Park YL Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235801 [TBL] [Abstract][Full Text] [Related]
10. Efficient Use of Carbon Fibers as Heating Elements for Curing of Epoxy Matrix Composites. Kontaxis LC; Chontzoglou IE; Papanicolaou GC Molecules; 2021 Aug; 26(16):. PubMed ID: 34443683 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive review on recent developments of radio frequency treatment for pasteurizing agricultural products. Zhang L; Lan R; Zhang B; Erdogdu F; Wang S Crit Rev Food Sci Nutr; 2021; 61(3):380-394. PubMed ID: 32156148 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating. Said A; Salah A; Fattah GA Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772884 [TBL] [Abstract][Full Text] [Related]
13. Tailored Out-of-Oven Energy Efficient Manufacturing of High-Performance Composites with Two-Stage Self-Regulating Heating via a Double Positive Temperature Coefficient Effect. Yao X; Wang Y; Thorn TDS; Huo S; Papageorgiou DG; Liu Y; Bilotti E; Zhang H ACS Appl Mater Interfaces; 2023 Dec; 15(48):56265-56274. PubMed ID: 37988581 [TBL] [Abstract][Full Text] [Related]
14. Influence of mashed potato dielectric properties and circulating water electric conductivity on radio frequency heating at 27 MHz. Wang J; Olsen RG; Tang J; Tang Z J Microw Power Electromagn Energy; 2008; 42(2):31-46. PubMed ID: 19227075 [TBL] [Abstract][Full Text] [Related]
15. Use of fillers to enable the microwave processing of polyethylene. Harper J; Price D; Zhang J J Microw Power Electromagn Energy; 2007; 40(4):219-27. PubMed ID: 17847676 [TBL] [Abstract][Full Text] [Related]
16. Advanced anaerobic digestion of municipal sludge using a novel and energy-efficient radio frequency pretreatment system. Hosseini Koupaie E; Johnson T; Eskicioglu C Water Res; 2017 Jul; 118():70-81. PubMed ID: 28414962 [TBL] [Abstract][Full Text] [Related]
17. Present and future status of noninvasive selective deep heating using RF in hyperthermia. Kato H; Ishida T Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321 [TBL] [Abstract][Full Text] [Related]
18. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites. Farahani RD; Janier M; Dubé M Nanotechnology; 2018 Mar; 29(12):125701. PubMed ID: 29350629 [TBL] [Abstract][Full Text] [Related]
19. Migrating temperature "thermo-chromatographic" pulses (TCP) initiated by radio-frequency (RF) heating. Kraus M; Kopinke FD; Roland U J Microw Power Electromagn Energy; 2012; 46(4):241-52. PubMed ID: 24432591 [TBL] [Abstract][Full Text] [Related]
20. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla. Winter L; Özerdem C; Hoffmann W; Santoro D; Müller A; Waiczies H; Seemann R; Graessl A; Wust P; Niendorf T PLoS One; 2013; 8(4):e61661. PubMed ID: 23613896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]