These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36132649)

  • 1. The role of size and nature in nanoparticle binding to a model lung membrane: an atomistic study.
    Singhal A; Agur Sevink GJ
    Nanoscale Adv; 2021 Nov; 3(23):6635-6648. PubMed ID: 36132649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Core-Shell Approach for Systematically Coarsening Nanoparticle-Membrane Interactions: Application to Silver Nanoparticles.
    Singhal A; Sevink GJA
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Modelling of Bionano Interface.
    Lopez H; Brandt EG; Mirzoev A; Zhurkin D; Lyubartsev A; Lobaskin V
    Adv Exp Med Biol; 2017; 947():173-206. PubMed ID: 28168669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simulation Study on the Interaction Between Pollutant Nanoparticles and the Pulmonary Surfactant Monolayer.
    Yue K; Sun X; Tang J; Wei Y; Zhang X
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine.
    Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insights into the uptake of SiO
    Yuan S; Zhang H; Wang X; Zhang H; Zhang Z; Yuan S
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112250. PubMed ID: 34861541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding nanoparticle cellular entry: A physicochemical perspective.
    Beddoes CM; Case CP; Briscoe WH
    Adv Colloid Interface Sci; 2015 Apr; 218():48-68. PubMed ID: 25708746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of silica nanoparticles on cell membrane fluidity: The role of temperature and membrane composition.
    Wei X; Liu N; Song J; Ren C; Tang X; Jiang W
    Sci Total Environ; 2022 Sep; 838(Pt 4):156552. PubMed ID: 35688239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent interaction of hydrophilic/hydrophobic ligand functionalized cationic and anionic nanoparticles with lipid bilayers.
    Kumar Basak U; Roobala C; Basu JK; Maiti PK
    J Phys Condens Matter; 2020 Mar; 32(10):104003. PubMed ID: 31722322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques.
    Hsiao IL; Bierkandt FS; Reichardt P; Luch A; Huang YJ; Jakubowski N; Tentschert J; Haase A
    J Nanobiotechnology; 2016 Jun; 14(1):50. PubMed ID: 27334629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system.
    Tang H; Ye H; Zhang H; Zheng Y
    Nanotechnology; 2018 Oct; 29(40):405102. PubMed ID: 30020084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins.
    Van Lehn RC; Alexander-Katz A
    J Phys Chem B; 2014 Nov; 118(44):12586-98. PubMed ID: 25347475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.