These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36132649)

  • 21. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2).
    Canesi L; Fabbri R; Gallo G; Vallotto D; Marcomini A; Pojana G
    Aquat Toxicol; 2010 Oct; 100(2):168-77. PubMed ID: 20444507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of oxide nanoparticles on the morphology and fluidity of phospholipid membranes and the role of hydrogen bonds.
    Wei X; Yu J; Ding L; Hu J; Jiang W
    J Environ Sci (China); 2017 Jul; 57():221-230. PubMed ID: 28647242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides.
    Yan Z; Wu Z; Li S; Zhang X; Yi X; Yue T
    Nanoscale; 2019 Nov; 11(42):19751-19762. PubMed ID: 31384870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of nanoparticle geometry in endocytosis: laying down to stand up.
    Huang C; Zhang Y; Yuan H; Gao H; Zhang S
    Nano Lett; 2013 Sep; 13(9):4546-50. PubMed ID: 23972158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functionalized nanoparticle interactions with polymeric membranes.
    Ladner DA; Steele M; Weir A; Hristovski K; Westerhoff P
    J Hazard Mater; 2012 Apr; 211-212():288-95. PubMed ID: 22177020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Atomistic Look into Bio-inspired Nanoparticles and their Molecular Interactions with Cells.
    Petretto E; Campomanes P; Stellacci F; Rothen-Rutishauser B; Petri-Fink A; Vanni S
    Chimia (Aarau); 2019 Feb; 73(1-2):78-80. PubMed ID: 30814004
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of lipid coating on the interaction between silica nanoparticles and membranes.
    Tada DB; Suraniti E; Rossi LM; Leite CA; Oliveira CS; Tumolo TC; Calemczuk R; Livache T; Baptista MS
    J Biomed Nanotechnol; 2014 Mar; 10(3):519-28. PubMed ID: 24730247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer.
    Yang K; Yang R; Tian X; He K; Filbrun SL; Fang N; Ma Y; Yuan B
    Phys Chem Chem Phys; 2018 Nov; 20(44):28241-28248. PubMed ID: 30398246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly of ultra-small-sized carbon nanoparticles in lipid membrane disrupts its integrity.
    Fang B; Dai X; Li B; Qu Y; Li YQ; Zhao M; Yang Y; Li W
    Nanoscale Adv; 2021 Dec; 4(1):163-172. PubMed ID: 36132950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: A computational model.
    Li Y; Zhang M; Niu X; Yue T
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112467. PubMed ID: 35366575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biophysical characterization of nanoparticle-endothelial model cell membrane interactions.
    Peetla C; Labhasetwar V
    Mol Pharm; 2008; 5(3):418-29. PubMed ID: 18271547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea.
    Radniecki TS; Stankus DP; Neigh A; Nason JA; Semprini L
    Chemosphere; 2011 Sep; 85(1):43-9. PubMed ID: 21757219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles.
    Lai CS; Chen YC; Wang HF; Ho HC; Ho RM; Tsai DH
    Nanotechnology; 2017 Jan; 28(3):035602. PubMed ID: 27928994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
    Arami H; Ferguson RM; Khandhar AP; Krishnan KM
    Med Phys; 2013 Jul; 40(7):071904. PubMed ID: 23822441
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.