BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36132668)

  • 1. Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field.
    Morales I; Costo R; Mille N; Carrey J; Hernando A; de la Presa P
    Nanoscale Adv; 2021 Oct; 3(20):5801-5812. PubMed ID: 36132668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
    Feng X; Jia G; Peng J; Huang L; Liang X; Zhang H; Liu Y; Zhang B; Zhang Y; Sun M; Li P; Miao Q; Wang Y; Xi L; Hu K; Li T; Hui H; Tian J
    Med Phys; 2023 Jul; 50(7):4651-4663. PubMed ID: 37293867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incidence of the Brownian Relaxation Process on the Magnetic Properties of Ferrofluids.
    Vajtai L; Nemes NM; Morales MDP; Molnár K; Pinke BG; Simon F
    Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
    Utkur M; Saritas EU
    Med Phys; 2022 Apr; 49(4):2590-2601. PubMed ID: 35103333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of Dynamic Behaviour in Magnetic Nanoparticles.
    Rietberg MT; Waanders S; Horstman-van de Loosdrecht MM; Wildeboer RR; Ten Haken B; Alic L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia.
    Myrovali E; Papadopoulos K; Charalampous G; Kesapidou P; Vourlias G; Kehagias T; Angelakeris M; Wiedwald U
    ACS Omega; 2023 Apr; 8(14):12955-12967. PubMed ID: 37065034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent quantification of magnetic nanoparticles temperature and relaxation time.
    Shi Y; Weaver JB
    Med Phys; 2019 Sep; 46(9):4070-4076. PubMed ID: 31209904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.
    Ota S; Kitaguchi R; Takeda R; Yamada T; Takemura Y
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems.
    Khandhar AP; Ferguson RM; Krishnan KM
    J Appl Phys; 2011 Apr; 109(7):7B310-7B3103. PubMed ID: 21523253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Field Orientation and Dynamics of Ferrofluids Studied by Mössbauer Spectroscopy.
    Landers J; Salamon S; Remmer H; Ludwig F; Wende H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3160-3168. PubMed ID: 30582794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles.
    Castellanos-Rubio I; Rodrigo I; Olazagoitia-Garmendia A; Arriortua O; Gil de Muro I; Garitaonandia JS; Bilbao JR; Fdez-Gubieda ML; Plazaola F; Orue I; Castellanos-Rubio A; Insausti M
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):27917-27929. PubMed ID: 32464047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.
    Castellanos-Rubio I; Rodrigo I; Munshi R; Arriortua O; Garitaonandia JS; Martinez-Amesti A; Plazaola F; Orue I; Pralle A; Insausti M
    Nanoscale; 2019 Sep; 11(35):16635-16649. PubMed ID: 31460555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Magnetic Fluids in Crossed DC and AC Magnetic Fields.
    Pshenichnikov A; Lebedev A; Ivanov AO
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31801220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Traits of MNPs under High-Frequency Magnetic Fields: Disentangling the Effect of Size and Coating.
    Aurélio D; Mikšátko J; Veverka M; Michlová M; Kalbáč M; Vejpravová J
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry).
    Garaio E; Sandre O; Collantes JM; Garcia JA; Mornet S; Plazaola F
    Nanotechnology; 2015 Jan; 26(1):015704. PubMed ID: 25490677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic susceptibility of a concentrated ferrofluid: The role of interparticle interactions.
    Lebedev AV; Stepanov VI; Kuznetsov AA; Ivanov AO; Pshenichnikov AF
    Phys Rev E; 2019 Sep; 100(3-1):032605. PubMed ID: 31639971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells.
    Spyridopoulou K; Makridis A; Maniotis N; Karypidou N; Myrovali E; Samaras T; Angelakeris M; Chlichlia K; Kalogirou O
    Nanotechnology; 2018 Apr; 29(17):175101. PubMed ID: 29498936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective induction of death in mesothelioma cells with magnetite nanoparticles under an alternating magnetic field.
    Matsuda S; Nakajima E; Nakanishi T; Hitsuji A; Zhang H; Tanaka A; Matsuda H; Momma T; Osaka T
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():90-96. PubMed ID: 28888022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.