These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36132677)

  • 1. Vapor-solid-solid growth dynamics in GaAs nanowires.
    Maliakkal CB; Tornberg M; Jacobsson D; Lehmann S; Dick KA
    Nanoscale Adv; 2021 Oct; 3(20):5928-5940. PubMed ID: 36132677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-flow kinetics model for the vapor-solid-solid Si nanowires growth.
    Cui H; Lü YY; Yang GW; Chen YM; Wang CX
    Nano Lett; 2015 May; 15(5):3640-5. PubMed ID: 25928836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time observation of the solid-liquid-vapor dissolution of individual tin(IV) oxide nanowires.
    Hudak BM; Chang YJ; Yu L; Li G; Edwards DN; Guiton BS
    ACS Nano; 2014 Jun; 8(6):5441-8. PubMed ID: 24818706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying.
    Perea DE; Li N; Dickerson RM; Misra A; Picraux ST
    Nano Lett; 2011 Aug; 11(8):3117-22. PubMed ID: 21696182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coexistence of vapor-liquid-solid and vapor-solid-solid growth modes in Pd-assisted InAs nanowires.
    Heun S; Radha B; Ercolani D; Kulkarni GU; Rossi F; Grillo V; Salviati G; Beltram F; Sorba L
    Small; 2010 Sep; 6(17):1935-41. PubMed ID: 20662001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.
    Wen CY; Reuter MC; Tersoff J; Stach EA; Ross FM
    Nano Lett; 2010 Feb; 10(2):514-9. PubMed ID: 20041666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent Control of Nucleation and Layer Growth in Nanowires.
    Maliakkal CB; Mårtensson EK; Tornberg MU; Jacobsson D; Persson AR; Johansson J; Wallenberg LR; Dick KA
    ACS Nano; 2020 Apr; 14(4):3868-3875. PubMed ID: 32049491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Concept for Designing Vapor-Liquid-Solid Growth of Single Crystalline Metal Oxide Nanowires.
    Klamchuen A; Suzuki M; Nagashima K; Yoshida H; Kanai M; Zhuge F; He Y; Meng G; Kai S; Takeda S; Kawai T; Yanagida T
    Nano Lett; 2015 Oct; 15(10):6406-12. PubMed ID: 26372675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys.
    Biswas S; O'Regan C; Morris MA; Holmes JD
    Small; 2015 Jan; 11(1):103-11. PubMed ID: 25196560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
    Connell JG; Yoon K; Perea DE; Schwalbach EJ; Voorhees PW; Lauhon LJ
    Nano Lett; 2013 Jan; 13(1):199-206. PubMed ID: 23237496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-Liquid-Vapor Etching of Semiconductor Nanowires.
    Hui HY; Filler MA
    Nano Lett; 2015 Oct; 15(10):6939-45. PubMed ID: 26383971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalyzed oxidation for nanowire growth.
    Tai K; Sun K; Huang B; Dillon SJ
    Nanotechnology; 2014 Apr; 25(14):145603. PubMed ID: 24633154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Concept for Reducing Growth Temperature in Vapor-Liquid-Solid Process of Metal Oxide Nanowires.
    Zhu Z; Suzuki M; Nagashima K; Yoshida H; Kanai M; Meng G; Anzai H; Zhuge F; He Y; Boudot M; Takeda S; Yanagida T
    Nano Lett; 2016 Dec; 16(12):7495-7502. PubMed ID: 27960479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circumventing the Uncertainties of the Liquid Phase in the Compositional Control of VLS III-V Ternary Nanowires Based on Group V Intermix.
    Dubrovskii VG
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth kinetics of heterostructured GaP-GaAs nanowires.
    Verheijen MA; Immink G; de Smet T; Borgström MT; Bakkers EP
    J Am Chem Soc; 2006 Feb; 128(4):1353-9. PubMed ID: 16433555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vapor-liquid-solid growth of endotaxial semiconductor nanowires.
    Li S; Huang X; Liu Q; Cao X; Huo F; Zhang H; Gan CL
    Nano Lett; 2012 Nov; 12(11):5565-70. PubMed ID: 23066984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.
    Kumar RR; Rao KN; Rajanna K; Phani AR
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5485-90. PubMed ID: 24758054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the true shape of Au-catalyzed GaAs nanowires.
    Jiang N; Wong-Leung J; Joyce HJ; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2014 Oct; 14(10):5865-72. PubMed ID: 25244584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ TEM observation of the vapor-solid-solid growth of <001[combining macron]> InAs nanowires.
    Sun Q; Pan D; Li M; Zhao J; Chen P; Lu W; Zou J
    Nanoscale; 2020 Jun; 12(21):11711-11717. PubMed ID: 32452500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.