These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36132721)
1. Manipulating acoustic and plasmonic modes in gold nanostars. Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G Nanoscale Adv; 2019 Jul; 1(7):2690-2698. PubMed ID: 36132721 [TBL] [Abstract][Full Text] [Related]
2. Heterodimeric Plasmonic Nanogaps for Biosensing. Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558364 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments. Shao L; Susha AS; Cheung LS; Sau TK; Rogach AL; Wang J Langmuir; 2012 Jun; 28(24):8979-84. PubMed ID: 22353020 [TBL] [Abstract][Full Text] [Related]
4. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas. Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406 [TBL] [Abstract][Full Text] [Related]
5. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy. Wu Y; Li G; Camden JP Chem Rev; 2018 Mar; 118(6):2994-3031. PubMed ID: 29215265 [TBL] [Abstract][Full Text] [Related]
6. High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Ren X; Cheng J; Zhang S; Li X; Rao T; Huo L; Hou J; Choy WC Small; 2016 Oct; 12(37):5200-5207. PubMed ID: 27487460 [TBL] [Abstract][Full Text] [Related]
7. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy. Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale mapping of shifts in dark plasmon modes in sub 10 nm aluminum nanoantennas. Elibol K; Downing C; Hobbs RG Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35944508 [TBL] [Abstract][Full Text] [Related]
9. Plasmon modes of a silver thin film taper probed with STEM-EELS. Schmidt FP; Ditlbacher H; Trügler A; Hohenester U; Hohenau A; Hofer F; Krenn JR Opt Lett; 2015 Dec; 40(23):5670-3. PubMed ID: 26625078 [TBL] [Abstract][Full Text] [Related]
10. How Dark Are Radial Breathing Modes in Plasmonic Nanodisks? Schmidt FP; Losquin A; Hofer F; Hohenau A; Krenn JR; Kociak M ACS Photonics; 2018 Mar; 5(3):861-866. PubMed ID: 29607350 [TBL] [Abstract][Full Text] [Related]
11. Nearfield excited state imaging of bonding and antibonding plasmon modes in nanorod dimers via stimulated electron energy gain spectroscopy. Collette R; Garfinkel DA; Rack PD J Chem Phys; 2020 Jul; 153(4):044711. PubMed ID: 32752671 [TBL] [Abstract][Full Text] [Related]
12. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas. Křápek V; Koh AL; Břínek L; Hrtoň M; Tomanec O; Kalousek R; Maier SA; Šikola T Opt Express; 2015 May; 23(9):11855-67. PubMed ID: 25969276 [TBL] [Abstract][Full Text] [Related]
13. Functionalization of Gold Nanostars with Melamine for Colorimetric Detection of Uric Acid. Dandu SS; Joshi DJ; Park TJ; Kailasa SK Appl Spectrosc; 2023 Apr; 77(4):360-370. PubMed ID: 36653320 [TBL] [Abstract][Full Text] [Related]
14. The effects of bending on plasmonic modes in nanowires and planar structures. Bellido EP; Bicket IC; Botton GA Nanophotonics; 2022 Jan; 11(2):305-314. PubMed ID: 36533260 [TBL] [Abstract][Full Text] [Related]
15. Colloidal plasmonic nanostar antennas with wide range resonance tunability. Tsoulos TV; Atta S; Lagos MJ; Beetz M; Batson PE; Tsilomelekis G; Fabris L Nanoscale; 2019 Oct; 11(40):18662-18671. PubMed ID: 31584591 [TBL] [Abstract][Full Text] [Related]
16. Surface Plasmon Resonances in Silver Nanostars. Reyes Gómez F; Rubira RJG; Camacho SA; Martin CS; da Silva RR; Constantino CJL; Alessio P; Oliveira ON; Mejía-Salazar JR Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413000 [TBL] [Abstract][Full Text] [Related]
17. Differences between surfactant-free Au@Ag and CTAB-stabilized Au@Ag star-like nanoparticles in the preparation of nanoarrays to improve their surface-enhanced Raman scattering (SERS) performance. Van Vu S; Nguyen AT; Cao Tran AT; Thi Le VH; Lo TNH; Ho TH; Pham NNT; Park I; Vo KQ Nanoscale Adv; 2023 Oct; 5(20):5543-5561. PubMed ID: 37822906 [TBL] [Abstract][Full Text] [Related]
19. Local electron beam excitation and substrate effect on the plasmonic response of single gold nanostars. Das P; Kedia A; Kumar PS; Large N; Chini TK Nanotechnology; 2013 Oct; 24(40):405704. PubMed ID: 24029251 [TBL] [Abstract][Full Text] [Related]
20. Spectral Characterization and Intracellular Detection of Surface-Enhanced Raman Scattering (SERS)-Encoded Plasmonic Gold Nanostars. Yuan H; Fales AM; Khoury CG; Liu J; Vo-Dinh T J Raman Spectrosc; 2013 Feb; 44(2):234-239. PubMed ID: 24839346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]