These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36132755)

  • 1. Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet.
    Baibakov M; Barulin A; Roy P; Claude JB; Patra S; Wenger J
    Nanoscale Adv; 2020 Sep; 2(9):4153-4160. PubMed ID: 36132755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET enhancement in aluminum zero-mode waveguides.
    de Torres J; Ghenuche P; Moparthi SB; Grigoriev V; Wenger J
    Chemphyschem; 2015 Mar; 16(4):782-8. PubMed ID: 25640052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides.
    Martin WE; Srijanto BR; Collier CP; Vosch T; Richards CI
    J Phys Chem A; 2016 Sep; 120(34):6719-27. PubMed ID: 27499174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold Ion Beam Milled Gold Zero-Mode Waveguides.
    Messina TC; Srijanto BR; Collier CP; Kravchenko II; Richards CI
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-Mode Waveguide Nanophotonic Structures for Single Molecule Characterization.
    Crouch GM; Han D; Bohn PW
    J Phys D Appl Phys; 2018 May; 51(19):193001. PubMed ID: 34158676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending Single-Molecule Förster Resonance Energy Transfer (FRET) Range beyond 10 Nanometers in Zero-Mode Waveguides.
    Baibakov M; Patra S; Claude JB; Moreau A; Lumeau J; Wenger J
    ACS Nano; 2019 Jul; 13(7):8469-8480. PubMed ID: 31283186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement.
    Al Masud A; Martin WE; Moonschi FH; Park SM; Srijanto BR; Graham KR; Collier CP; Richards CI
    Nanoscale Adv; 2020 May; 2(5):1894-1903. PubMed ID: 36132495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides.
    Barulin A; Claude JB; Patra S; Bonod N; Wenger J
    Nano Lett; 2019 Oct; 19(10):7434-7442. PubMed ID: 31526002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis.
    Jamiolkowski RM; Chen KY; Fiorenza SA; Tate AM; Pfeil SH; Goldman YE
    PLoS One; 2019; 14(10):e0222964. PubMed ID: 31600217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Guided Delivery of Single Molecules into Zero-Mode Waveguides.
    Plénat T; Yoshizawa S; Fourmy D
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30561-30566. PubMed ID: 28825461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing.
    Teng CH; Lionberger TA; Zhang J; Meyhöfer E; Ku PC
    Nanotechnology; 2012 Nov; 23(45):455301. PubMed ID: 23085680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides.
    Han D; Crouch GM; Fu K; Zaino Iii LP; Bohn PW
    Chem Sci; 2017 Aug; 8(8):5345-5355. PubMed ID: 28970913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Zero Mode Waveguides for High Concentration Single Molecule Microscopy.
    Chen KY; Jamiolkowski RM; Tate AM; Fiorenza SA; Pfeil SH; Goldman YE
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark-field illumination on zero-mode waveguide/microfluidic hybrid chip reveals T4 replisomal protein interactions.
    Zhao Y; Chen D; Yue H; Spiering MM; Zhao C; Benkovic SJ; Huang TJ
    Nano Lett; 2014; 14(4):1952-60. PubMed ID: 24628474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Range Single-Molecule Förster Resonance Energy Transfer between Alexa Dyes in Zero-Mode Waveguides.
    Baibakov M; Patra S; Claude JB; Wenger J
    ACS Omega; 2020 Mar; 5(12):6947-6955. PubMed ID: 32258931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking.
    Chen Y; Gao J; Yang X
    Nano Lett; 2018 Jan; 18(1):520-527. PubMed ID: 29206469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels.
    Patra S; Baibakov M; Claude JB; Wenger J
    Sci Rep; 2020 Mar; 10(1):5235. PubMed ID: 32251328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving zero-mode waveguide structure for enhancing signal-to-noise ratio of real-time single-molecule fluorescence imaging: a computational study.
    Tanii T; Akahori R; Higano S; Okubo K; Yamamoto H; Ueno T; Funatsu T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012727. PubMed ID: 23944510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced second-harmonic generation from individual metallic nanoapertures.
    Schön P; Bonod N; Devaux E; Wenger J; Rigneault H; Ebbesen TW; Brasselet S
    Opt Lett; 2010 Dec; 35(23):4063-5. PubMed ID: 21124613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear-Zero Mode Waveguides for Single-Molecule Fluorescence Observation of Nucleotides in Kinesin-Microtubule Motility Assay.
    Fujimoto K; Iino R; Yokokawa R
    Methods Mol Biol; 2022; 2430():121-131. PubMed ID: 35476329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.