These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36132799)

  • 1. Functionalized carbon nanotube electrodes for controlled DNA sequencing.
    Kumawat RL; Pathak B
    Nanoscale Adv; 2020 Sep; 2(9):4041-4050. PubMed ID: 36132799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of DNA nucleotides by conductance and tunnelling current variation through borophene nanogaps.
    Jena MK; Pathak B
    Phys Chem Chem Phys; 2022 Sep; 24(35):21427-21439. PubMed ID: 36047510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes.
    Kumawat RL; Pathak B
    ACS Appl Bio Mater; 2021 Feb; 4(2):1403-1412. PubMed ID: 35014491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach.
    Kumawat RL; Pathak B
    J Phys Chem B; 2022 Feb; 126(6):1178-1187. PubMed ID: 35108006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen Doping of Carbon Nanoelectrodes for Enhanced Control of DNA Translocation Dynamics.
    Jung SW; Kim HS; Cho AE; Kim YH
    ACS Appl Mater Interfaces; 2018 May; 10(21):18227-18236. PubMed ID: 29741080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing.
    Kumawat RL; Garg P; Kumar S; Pathak B
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):219-225. PubMed ID: 30540178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles.
    Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH
    Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.
    Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH
    Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transverse electronic transport properties of single DNA nucleobase pairs between different electrode materials.
    Ni G; Li Z; Liang Y; Fang Y; Wang M; Liu D; Xu Y
    J Phys Condens Matter; 2023 Jan; 35(12):. PubMed ID: 36634364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore.
    de Souza FAL; Sivaraman G; Fyta M; Scheicher RH; Scopel WL; Amorim RG
    Nanoscale; 2020 Sep; 12(35):18289-18295. PubMed ID: 32857078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-Principles Investigation of Nanopore Sequencing Using Variable Voltage Bias on Graphene-Based Nanoribbons.
    McFarland HL; Ahmed T; Zhu JX; Balatsky AV; Haraldsen JT
    J Phys Chem Lett; 2015 Jul; 6(13):2616-21. PubMed ID: 26266743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanogap-based all-electronic DNA sequencing devices using MoS
    Perez A; Amorim RG; Villegas CEP; Rocha AR
    Phys Chem Chem Phys; 2020 Dec; 22(46):27053-27059. PubMed ID: 33215614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of a solvent on the electronic transport across diamondoid-functionalized biosensing electrodes.
    Dou M; Maier FC; Fyta M
    Nanoscale; 2019 Aug; 11(30):14216-14225. PubMed ID: 31317158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides.
    Kiakojouri A; Frank I; Nadimi E
    Phys Chem Chem Phys; 2021 Nov; 23(44):25126-25135. PubMed ID: 34729571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aviram-Ratner rectifying mechanism for DNA base-pair sequencing through graphene nanogaps.
    Agapito LA; Gayles J; Wolowiec C; Kioussis N
    Nanotechnology; 2012 Apr; 23(13):135202. PubMed ID: 22418779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene sculpturene nanopores for DNA nucleobase sensing.
    Sadeghi H; Algaragholy L; Pope T; Bailey S; Visontai D; Manrique D; Ferrer J; Garcia-Suarez V; Sangtarash S; Lambert CJ
    J Phys Chem B; 2014 Jun; 118(24):6908-14. PubMed ID: 24849015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device.
    Nelson T; Zhang B; Prezhdo OV
    Nano Lett; 2010 Sep; 10(9):3237-42. PubMed ID: 20722409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmark investigation of diamondoid-functionalized electrodes for nanopore DNA sequencing.
    Sivaraman G; Amorim RG; Scheicher RH; Fyta M
    Nanotechnology; 2016 Oct; 27(41):414002. PubMed ID: 27607107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA sequencing via molecular dynamics simulation with functionalized graphene nanopore.
    Mohammadi MM; Bavi O; Jamali Y
    J Mol Graph Model; 2023 Jul; 122():108467. PubMed ID: 37028198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA sequencing based on electronic tunneling in a gold nanogap: a first-principles study.
    Zou H; Wen S; Wu X; Wong KW; Yam C
    Phys Chem Chem Phys; 2022 Mar; 24(9):5748-5754. PubMed ID: 35191434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.