These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36132822)

  • 1. Brain-like critical dynamics and long-range temporal correlations in percolating networks of silver nanoparticles and functionality preservation after integration of insulating matrix.
    Carstens N; Adejube B; Strunskus T; Faupel F; Brown S; Vahl A
    Nanoscale Adv; 2022 Jul; 4(15):3149-3160. PubMed ID: 36132822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectome of memristive nanowire networks through graph theory.
    Milano G; Miranda E; Ricciardi C
    Neural Netw; 2022 Jun; 150():137-148. PubMed ID: 35313246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range temporal correlations in scale-free neuromorphic networks.
    Shirai S; Acharya SK; Bose SK; Mallinson JB; Galli E; Pike MD; Arnold MD; Brown SA
    Netw Neurosci; 2020; 4(2):432-447. PubMed ID: 32537535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Scale Dynamics Drive Brain-like Avalanches in Percolating Nanostructured Networks.
    Pike MD; Bose SK; Mallinson JB; Acharya SK; Shirai S; Galli E; Weddell SJ; Bones PJ; Arnold MD; Brown SA
    Nano Lett; 2020 May; 20(5):3935-3942. PubMed ID: 32347733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avalanches and criticality in self-organized nanoscale networks.
    Mallinson JB; Shirai S; Acharya SK; Bose SK; Galli E; Brown SA
    Sci Adv; 2019 Nov; 5(11):eaaw8438. PubMed ID: 31700999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks.
    Milano G; Pedretti G; Montano K; Ricci S; Hashemkhani S; Boarino L; Ielmini D; Ricciardi C
    Nat Mater; 2022 Feb; 21(2):195-202. PubMed ID: 34608285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zeolite-Based Memristive Synapse with Ultralow Sub-10-fJ Energy Consumption for Neuromorphic Computation.
    Zeng T; Zou X; Wang Z; Yu G; Yang Z; Rong H; Zhang C; Xu H; Lin Y; Zhao X; Ma J; Zhu G; Liu Y
    Small; 2021 Apr; 17(13):e2006662. PubMed ID: 33738968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-memristive neuromorphic computing with level-tuned neurons.
    Pantazi A; Woźniak S; Tuma T; Eleftheriou E
    Nanotechnology; 2016 Sep; 27(35):355205. PubMed ID: 27455898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.
    Bill J; Legenstein R
    Front Neurosci; 2014; 8():412. PubMed ID: 25565943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromorphic behavior in percolating nanoparticle films.
    Fostner S; Brown SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052134. PubMed ID: 26651673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic dynamics in complex self-assembled nanoparticle networks.
    Bose SK; Shirai S; Mallinson JB; Brown SA
    Faraday Discuss; 2019 Feb; 213(0):471-485. PubMed ID: 30357187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks.
    Brivio S; Ly DRB; Vianello E; Spiga S
    Front Neurosci; 2021; 15():580909. PubMed ID: 33633531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium-Battery Anode Gains Additional Functionality for Neuromorphic Computing through Metal-Insulator Phase Separation.
    Gonzalez-Rosillo JC; Balaish M; Hood ZD; Nadkarni N; Fraggedakis D; Kim KJ; Mullin KM; Pfenninger R; Bazant MZ; Rupp JLM
    Adv Mater; 2020 Mar; 32(9):e1907465. PubMed ID: 31958189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution and modulation of Ag filament dynamics within memristive devices based on necklace-like Ag@TiO
    Weng Z; Zhao Z; Jiang H; Fang Y; Lei W; Liu C
    Nanotechnology; 2022 Jan; 33(13):. PubMed ID: 34915460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conducting-insulating transition in adiabatic memristive networks.
    Sheldon FC; Di Ventra M
    Phys Rev E; 2017 Jan; 95(1-1):012305. PubMed ID: 28208448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware.
    Srinivasa N; Stepp ND; Cruz-Albrecht J
    Front Neurosci; 2015; 9():449. PubMed ID: 26648839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Imaging of the Onset of Electrical Conduction in Silver Nanowire Networks by Infrared Thermography: Evidence of Geometrical Quantized Percolation.
    Sannicolo T; Muñoz-Rojas D; Nguyen ND; Moreau S; Celle C; Simonato JP; Bréchet Y; Bellet D
    Nano Lett; 2016 Nov; 16(11):7046-7053. PubMed ID: 27753494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoS
    Li D; Wu B; Zhu X; Wang J; Ryu B; Lu WD; Lu W; Liang X
    ACS Nano; 2018 Sep; 12(9):9240-9252. PubMed ID: 30192507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.