These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36132839)

  • 1. Linewidth narrowing of aluminum breathing plasmon resonances in Bragg grating decorated nanodisks.
    Zhao X; Du C; Leng R; Li L; Luo W; Wu W; Xiang Y; Ren M; Zhang X; Cai W; Xu J
    Nanoscale Adv; 2021 Jul; 3(14):4286-4291. PubMed ID: 36132839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film.
    Sobhani A; Manjavacas A; Cao Y; McClain MJ; García de Abajo FJ; Nordlander P; Halas NJ
    Nano Lett; 2015 Oct; 15(10):6946-51. PubMed ID: 26383818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron energy loss of ultraviolet plasmonic modes in aluminum nanodisks.
    Yang Y; Hobbs RG; Keathley PD; Berggren KK
    Opt Express; 2020 Sep; 28(19):27405-27414. PubMed ID: 32988035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials.
    Liu B; Tang C; Chen J; Yan Z; Zhu M; Sui Y; Tang H
    Nanoscale Res Lett; 2017 Nov; 12(1):586. PubMed ID: 29124431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz hybrid optical-plasmonic modes: tunable resonant frequency, narrow linewidth, and strong local field enhancement.
    Zheng X; Wu J; Zhang J; Yu A; Yuan Y; Guo X; Zhu Y
    Opt Express; 2022 May; 30(11):19889-19903. PubMed ID: 36221753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-Bragg plasmon modes for highly efficient plasmon-enhanced second-harmonic generation at near-ultraviolet frequencies.
    Shen S; Zheng J; Lin Z; Chen Y; Gao R; Jin Y; Sun G; Shih TM; Yang Z
    Opt Express; 2021 Jul; 29(14):21444-21457. PubMed ID: 34265932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong optical coupling in metallo-dielectric hybrid metasurfaces.
    Ravishankar AP; Vennberg F; Anand S
    Opt Express; 2022 Nov; 30(23):42512-44524. PubMed ID: 36366704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks.
    Staude I; Miroshnichenko AE; Decker M; Fofang NT; Liu S; Gonzales E; Dominguez J; Luk TS; Neshev DN; Brener I; Kivshar Y
    ACS Nano; 2013 Sep; 7(9):7824-32. PubMed ID: 23952969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities.
    Li L; Cai W; Du C; Guan Z; Xiang Y; Ma Z; Wu W; Ren M; Zhang X; Tang A; Xu J
    Nanoscale; 2018 Dec; 10(47):22357-22361. PubMed ID: 30474670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence.
    Boonruang S; Greenwell A; Moharam MG
    Appl Opt; 2007 Nov; 46(33):7982-92. PubMed ID: 18026534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Dot Emission Driven by Mie Resonances in Silicon Nanostructures.
    Rutckaia V; Heyroth F; Novikov A; Shaleev M; Petrov M; Schilling J
    Nano Lett; 2017 Nov; 17(11):6886-6892. PubMed ID: 28968505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic toroidal dipole response in individual all-dielectric nanodisk clusters.
    Yang ZJ; Deng YH; Yu Y; He J
    Nanoscale; 2020 May; 12(19):10639-10646. PubMed ID: 32373891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized surface plasmon resonances in aluminum nanodisks.
    Langhammer C; Schwind M; Kasemo B; Zorić I
    Nano Lett; 2008 May; 8(5):1461-71. PubMed ID: 18393471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-mode surface plasmon distributed feedback lasers.
    Karami Keshmarzi E; Tait RN; Berini P
    Nanoscale; 2018 Mar; 10(13):5914-5922. PubMed ID: 29537008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film.
    Singh K; Panchenko E; Nasr B; Liu A; Wesemann L; Davis TJ; Roberts A
    Beilstein J Nanotechnol; 2018; 9():1491-1500. PubMed ID: 29977682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S; Li Z; Chen J
    Opt Express; 2021 Jul; 29(14):21358-21368. PubMed ID: 34265925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating.
    Barbara A; Collin S; Sauvan C; Le Perchec J; Maxime C; Pelouard JL; Quémerais P
    Opt Express; 2010 Jul; 18(14):14913-25. PubMed ID: 20639978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss-compensated slow-light fiber Bragg grating with 22-km/s group velocity.
    Vigneron PB; Boilard T; Balliu E; Broome AL; Bernier M; Digonnet MJF
    Opt Lett; 2020 Jun; 45(11):3179-3182. PubMed ID: 32479489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.