These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36132883)

  • 21. Influence of Random Plasmonic Metasurfaces on Fluorescence Enhancement.
    Anăstăsoaie V; Tomescu R; Kusko C; Mihalache I; Dinescu A; Parvulescu C; Craciun G; Caramizoiu S; Cristea D
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography.
    Krishnamoorthy S; Krishnan S; Thoniyot P; Low HY
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1033-40. PubMed ID: 21375254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of plasmonic cavity arrays for SERS analysis.
    Li N; Feng L; Teng F; Lu N
    Nanotechnology; 2017 May; 28(18):185301. PubMed ID: 28345533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Particle Lithography to Tailor the Architecture of Au Nanoparticle Plasmonic Nanoring Arrays.
    Pravitasari A; Negrito M; Light K; Chang WS; Link S; Sheldon M; Batteas JD
    J Phys Chem B; 2018 Jan; 122(2):730-736. PubMed ID: 28863258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.
    Wang AX; Kong X
    Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps.
    Li J; Deng TS; Liu X; Dolan JA; Scherer NF; Nealey PF
    Nano Lett; 2019 Jul; 19(7):4314-4320. PubMed ID: 31184897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection.
    Gomez-Cruz J; Bdour Y; Stamplecoskie K; Escobedo C
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchically Assembled Plasmonic Metal-Dielectric-Metal Hybrid Nano-Architectures for High-Sensitivity SERS Detection.
    Pandey P; Seo MK; Shin KH; Lee YW; Sohn JI
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of Ag/TiO
    Zhao X; Xu W; Tang X; Wen J; Wang Y
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays.
    Hu Y; Kumar P; Xu R; Zhao K; Cheng GJ
    Nanoscale; 2016 Jan; 8(1):172-82. PubMed ID: 26628390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS.
    Jin HM; Kim JY; Heo M; Jeong SJ; Kim BH; Cha SK; Han KH; Kim JH; Yang GG; Shin J; Kim SO
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44660-44667. PubMed ID: 30480431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars.
    Caldwell JD; Glembocki OJ; Bezares FJ; Kariniemi MI; Niinistö JT; Hatanpää TT; Rendell RW; Ukaegbu M; Ritala MK; Prokes SM; Hosten CM; Leskelä MA; Kasica R
    Opt Express; 2011 Dec; 19(27):26056-64. PubMed ID: 22274194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emission enhancement within gold spherical nanocavity arrays.
    Jose B; Steffen R; Neugebauer U; Sheridan E; Marthi R; Forster RJ; Keyes TE
    Phys Chem Chem Phys; 2009 Dec; 11(46):10923-33. PubMed ID: 19924327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing.
    Gopinath A; Boriskina SV; Premasiri WR; Ziegler L; Reinhard BM; Dal Negro L
    Nano Lett; 2009 Nov; 9(11):3922-9. PubMed ID: 19754067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring cavity coupled plasmonic substrates for SERS applications.
    L M J; Pillanagrovi J; Dutta-Gupta S
    Nanotechnology; 2023 Jun; 34(33):. PubMed ID: 37172574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-layer nanoarrays sandwiched by anodized aluminium oxide membranes: an approach to an inexpensive, reproducible, highly sensitive SERS substrate.
    Zhao C; Zhu Y; Chen L; Zhou S; Su Y; Ji X; Chen A; Gui X; Tang Z; Liu Z
    Nanoscale; 2018 Aug; 10(34):16278-16283. PubMed ID: 30128448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.