These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36133036)

  • 1. Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals.
    Gamler JTL; Leonardi A; Sang X; Koczkur KM; Unocic RR; Engel M; Skrabalak SE
    Nanoscale Adv; 2020 Mar; 2(3):1105-1114. PubMed ID: 36133036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rh@Au Core-Shell Nanocrystals with the Core in Tensile Strain and the Shell in Compressive Strain.
    Pawlik VD; Janssen A; Ding Y; Xia Y
    J Phys Chem C Nanomater Interfaces; 2024 Jan; 128(3):1377-1385. PubMed ID: 38293691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis.
    Zhang X; Sun Z; Jin R; Zhu C; Zhao C; Lin Y; Guan Q; Cao L; Wang H; Li S; Yu H; Liu X; Wang L; Wei S; Li WX; Lu J
    Nat Commun; 2023 Feb; 14(1):530. PubMed ID: 36725854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects.
    Wang JX; Inada H; Wu L; Zhu Y; Choi Y; Liu P; Zhou WP; Adzic RR
    J Am Chem Soc; 2009 Dec; 131(47):17298-302. PubMed ID: 19899768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications.
    Li C; Yan S; Fang J
    Small; 2021 Nov; 17(46):e2102244. PubMed ID: 34363320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enriching Silver Nanocrystals with a Second Noble Metal.
    Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D
    Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strained lattice with persistent atomic order in Pt3Fe2 intermetallic core-shell nanocatalysts.
    Prabhudev S; Bugnet M; Bock C; Botton GA
    ACS Nano; 2013 Jul; 7(7):6103-10. PubMed ID: 23773037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM.
    Bhattarai N; Casillas G; Ponce A; Jose-Yacaman M
    Surf Sci; 2013 Mar; 609():161-166. PubMed ID: 23457419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating lattice strain impact on the alloyed surface of small Au@PdPt core-shell nanoparticles.
    Williams BP; Yaguchi M; Lo WS; Kao CR; Lamontagne LK; Sneed BT; Brodsky CN; Chou LY; Kuo CH; Tsung CK
    Nanoscale; 2020 Apr; 12(16):8687-8692. PubMed ID: 32267279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.
    Rieger T; Zellekens P; Demarina N; Hassan AA; Hackemüller FJ; Lüth H; Pietsch U; Schäpers T; Grützmacher D; Lepsa MI
    Nanoscale; 2017 Nov; 9(46):18392-18401. PubMed ID: 29147699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals.
    Liu J; Zhang J
    Chem Rev; 2020 Feb; 120(4):2123-2170. PubMed ID: 31971378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic Identification of Interfaces in Individual Core@shell Quantum Dots.
    Liu G; Liang W; Xue X; Rosei F; Wang Y
    Adv Sci (Weinh); 2021 Nov; 8(22):e2102784. PubMed ID: 34647434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Strain Distributions in Individual Dealloyed Pt-Fe Catalyst Nanoparticles.
    Gan L; Yu R; Luo J; Cheng Z; Zhu J
    J Phys Chem Lett; 2012 Apr; 3(7):934-8. PubMed ID: 26286424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework.
    Pambudi FI; Anderson MW; Attfield MP
    Chem Sci; 2019 Nov; 10(41):9571-9575. PubMed ID: 32055330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Pt shell thicknesses on the atomic structure of Ru-Pt core-shell nanoparticles for methanol electrooxidation applications.
    Chen TY; Lin TL; Luo TJ; Choi Y; Lee JF
    Chemphyschem; 2010 Aug; 11(11):2383-92. PubMed ID: 20602406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Crystal Facet Engineering of Core-Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region.
    Su K; Zhang H; Qian S; Li J; Zhu J; Tang Y; Qiu X
    ACS Nano; 2021 Mar; 15(3):5178-5188. PubMed ID: 33588529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.