These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36133063)

  • 1. Radical enhancement of molecular thermoelectric efficiency.
    Sangtarash S; Sadeghi H
    Nanoscale Adv; 2020 Mar; 2(3):1031-1035. PubMed ID: 36133063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity.
    Sadeghi H
    J Phys Chem C Nanomater Interfaces; 2019 May; 123(20):12556-12562. PubMed ID: 32064012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation.
    Sadeghi H; Sangtarash S; Lambert CJ
    Nano Lett; 2015 Nov; 15(11):7467-72. PubMed ID: 26458053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and doping.
    Al-Galiby QH; Sadeghi H; Manrique DZ; Lambert CJ
    Nanoscale; 2017 Apr; 9(14):4819-4825. PubMed ID: 28352900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric Enhancement in Single Organic Radical Molecules.
    Hurtado-Gallego J; Sangtarash S; Davidson R; Rincón-García L; Daaoub A; Rubio-Bollinger G; Lambert CJ; Oganesyan VS; Bryce MR; Agraït N; Sadeghi H
    Nano Lett; 2022 Feb; 22(3):948-953. PubMed ID: 35073099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Mechanosensitive Thermoelectric Enhancement in Metallo-Organic Magnetic Molecules.
    Alsaqer M; Daaoub AHS; Sangtarash S; Sadeghi H
    Nano Lett; 2023 Dec; 23(23):10719-10724. PubMed ID: 37988562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires.
    Noori M; Sadeghi H; Lambert CJ
    Nanoscale; 2017 Apr; 9(16):5299-5304. PubMed ID: 28398431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties.
    Tran VT; Saint-Martin J; Dollfus P; Volz S
    Sci Rep; 2017 May; 7(1):2313. PubMed ID: 28539598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of phonon transport by the formation of the Al
    Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK
    Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictions.
    Noori M; Sadeghi H; Lambert CJ
    Nanoscale; 2018 Oct; 10(40):19220-19223. PubMed ID: 30303219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Level Modulation of Small Molecules Enhances Thermoelectric Performances of Carbon Nanotube-Based Organic Hybrid Materials.
    Kim TH; Hong JI
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55627-55635. PubMed ID: 36510648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High cross-plane thermoelectric performance of metallo-porphyrin molecular junctions.
    Noori M; Sadeghi H; Al-Galiby Q; Bailey SWD; Lambert CJ
    Phys Chem Chem Phys; 2017 Jul; 19(26):17356-17359. PubMed ID: 28650012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room-Temperature Welding of Silver Telluride Nanowires for High-Performance Thermoelectric Film.
    Zeng X; Ren L; Xie J; Mao D; Wang M; Zeng X; Du G; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37892-37900. PubMed ID: 31560511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.
    Fei R; Faghaninia A; Soklaski R; Yan JA; Lo C; Yang L
    Nano Lett; 2014 Nov; 14(11):6393-9. PubMed ID: 25254626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation and Quantum-Interference-Enhanced Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives.
    Almughathawi R; Hou S; Wu Q; Liu Z; Hong W; Lambert C
    ACS Sens; 2021 Feb; 6(2):470-476. PubMed ID: 33382942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Thermoelectric Performance in n-Type Perylene Bisimide Induced by the Soret Effect.
    Jiang Q; Sun H; Zhao D; Zhang F; Hu D; Jiao F; Qin L; Linseis V; Fabiano S; Crispin X; Ma Y; Cao Y
    Adv Mater; 2020 Nov; 32(45):e2002752. PubMed ID: 32924214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biaxial Tensile Strain-Induced Enhancement of Thermoelectric Efficiency of
    Chen SB; Liu G; Yan WJ; Hu CE; Chen XR; Geng HY
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles prediction of large thermoelectric efficiency in superionic Li
    Haque E; Cazorla C; Hossain MA
    Phys Chem Chem Phys; 2020 Jan; 22(2):878-889. PubMed ID: 31844875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.