These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Large Mechanosensitive Thermoelectric Enhancement in Metallo-Organic Magnetic Molecules. Alsaqer M; Daaoub AHS; Sangtarash S; Sadeghi H Nano Lett; 2023 Dec; 23(23):10719-10724. PubMed ID: 37988562 [TBL] [Abstract][Full Text] [Related]
7. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires. Noori M; Sadeghi H; Lambert CJ Nanoscale; 2017 Apr; 9(16):5299-5304. PubMed ID: 28398431 [TBL] [Abstract][Full Text] [Related]
8. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties. Tran VT; Saint-Martin J; Dollfus P; Volz S Sci Rep; 2017 May; 7(1):2313. PubMed ID: 28539598 [TBL] [Abstract][Full Text] [Related]
9. Control of phonon transport by the formation of the Al Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061 [TBL] [Abstract][Full Text] [Related]
10. Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictions. Noori M; Sadeghi H; Lambert CJ Nanoscale; 2018 Oct; 10(40):19220-19223. PubMed ID: 30303219 [TBL] [Abstract][Full Text] [Related]
11. Energy Level Modulation of Small Molecules Enhances Thermoelectric Performances of Carbon Nanotube-Based Organic Hybrid Materials. Kim TH; Hong JI ACS Appl Mater Interfaces; 2022 Dec; 14(50):55627-55635. PubMed ID: 36510648 [TBL] [Abstract][Full Text] [Related]
12. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
13. High cross-plane thermoelectric performance of metallo-porphyrin molecular junctions. Noori M; Sadeghi H; Al-Galiby Q; Bailey SWD; Lambert CJ Phys Chem Chem Phys; 2017 Jul; 19(26):17356-17359. PubMed ID: 28650012 [TBL] [Abstract][Full Text] [Related]
14. Room-Temperature Welding of Silver Telluride Nanowires for High-Performance Thermoelectric Film. Zeng X; Ren L; Xie J; Mao D; Wang M; Zeng X; Du G; Sun R; Xu JB; Wong CP ACS Appl Mater Interfaces; 2019 Oct; 11(41):37892-37900. PubMed ID: 31560511 [TBL] [Abstract][Full Text] [Related]
15. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Fei R; Faghaninia A; Soklaski R; Yan JA; Lo C; Yang L Nano Lett; 2014 Nov; 14(11):6393-9. PubMed ID: 25254626 [TBL] [Abstract][Full Text] [Related]
16. Enhanced thermoelectric performance of rough silicon nanowires. Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582 [TBL] [Abstract][Full Text] [Related]
17. Conformation and Quantum-Interference-Enhanced Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives. Almughathawi R; Hou S; Wu Q; Liu Z; Hong W; Lambert C ACS Sens; 2021 Feb; 6(2):470-476. PubMed ID: 33382942 [TBL] [Abstract][Full Text] [Related]
18. High Thermoelectric Performance in n-Type Perylene Bisimide Induced by the Soret Effect. Jiang Q; Sun H; Zhao D; Zhang F; Hu D; Jiao F; Qin L; Linseis V; Fabiano S; Crispin X; Ma Y; Cao Y Adv Mater; 2020 Nov; 32(45):e2002752. PubMed ID: 32924214 [TBL] [Abstract][Full Text] [Related]
19. Biaxial Tensile Strain-Induced Enhancement of Thermoelectric Efficiency of Chen SB; Liu G; Yan WJ; Hu CE; Chen XR; Geng HY Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009989 [TBL] [Abstract][Full Text] [Related]
20. First-principles prediction of large thermoelectric efficiency in superionic Li Haque E; Cazorla C; Hossain MA Phys Chem Chem Phys; 2020 Jan; 22(2):878-889. PubMed ID: 31844875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]