These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 36133144)
1. 3D printed electrodes for efficient membrane capacitive deionization. Vafakhah S; Sim GJ; Saeedikhani M; Li X; Valdivia Y Alvarado P; Yang HY Nanoscale Adv; 2019 Dec; 1(12):4804-4811. PubMed ID: 36133144 [TBL] [Abstract][Full Text] [Related]
2. Brackish groundwater desalination by constant current membrane capacitive deionization (MCDI): Results of a long-term field trial in Central Australia. Zhu Y; Miller C; Lian B; Wang Y; Fletcher J; Zhou H; He Z; Lyu S; Purser M; Juracich P; Sweeney D; Waite TD Water Res; 2024 May; 254():121413. PubMed ID: 38489850 [TBL] [Abstract][Full Text] [Related]
3. A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes. Elewa MM; El Batouti M; Al-Harby NF Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445186 [TBL] [Abstract][Full Text] [Related]
4. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics. Li G; Cai W; Zhao R; Hao L Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403 [TBL] [Abstract][Full Text] [Related]
5. Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system. Sriramulu D; Yang HY Nanoscale; 2019 Mar; 11(13):5896-5908. PubMed ID: 30874713 [TBL] [Abstract][Full Text] [Related]
6. Efficient Capacitive Deionization Using Natural Basswood-Derived, Freestanding, Hierarchically Porous Carbon Electrodes. Liu M; Xu M; Xue Y; Ni W; Huo S; Wu L; Yang Z; Yan YM ACS Appl Mater Interfaces; 2018 Sep; 10(37):31260-31270. PubMed ID: 30141323 [TBL] [Abstract][Full Text] [Related]
7. Energy Efficiency of Electro-Driven Brackish Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive Deionization. Patel SK; Qin M; Walker WS; Elimelech M Environ Sci Technol; 2020 Mar; 54(6):3663-3677. PubMed ID: 32084313 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Tang W; He D; Zhang C; Kovalsky P; Waite TD Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988 [TBL] [Abstract][Full Text] [Related]
9. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Hassanvand A; Chen GQ; Webley PA; Kentish SE Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078 [TBL] [Abstract][Full Text] [Related]
10. A Polyoxometalate-Based Binder-Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination. Liu H; Zhang J; Xu X; Wang Q Chemistry; 2020 Apr; 26(19):4403-4409. PubMed ID: 32017296 [TBL] [Abstract][Full Text] [Related]
11. Dual-Ion Electrochemical Deionization System with Binder-Free Aerogel Electrodes. Zhao W; Ding M; Guo L; Yang HY Small; 2019 Mar; 15(9):e1805505. PubMed ID: 30714314 [TBL] [Abstract][Full Text] [Related]
12. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations. He Z; Liu S; Lian B; Fletcher J; Bales C; Wang Y; Waite TD Water Res; 2021 Oct; 204():117646. PubMed ID: 34543974 [TBL] [Abstract][Full Text] [Related]
13. Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters. Tan C; He C; Tang W; Kovalsky P; Fletcher J; Waite TD Water Res; 2018 Dec; 147():276-286. PubMed ID: 30317037 [TBL] [Abstract][Full Text] [Related]
14. Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization. Jain A; Kim J; Owoseni OM; Weathers C; Caña D; Zuo K; Walker WS; Li Q; Verduzco R Environ Sci Technol; 2018 May; 52(10):5859-5867. PubMed ID: 29659269 [TBL] [Abstract][Full Text] [Related]
15. Sulfonated GO coated carbon electrodes with cation-selective functions for enhanced capacitive deionization of saltwater. Cheng HC; Chen PA; Peng CY; Liu SH; Wang HP Environ Technol; 2024 Apr; 45(9):1770-1780. PubMed ID: 36469603 [TBL] [Abstract][Full Text] [Related]
16. Design and Implementation of an Electrical Characterization System for Membrane Capacitive Deionization Units for the Water Treatment. Leon FA; Ramos-Martin A; Santana D Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677539 [TBL] [Abstract][Full Text] [Related]
17. High performance of membrane capacitive deionization with ZnS/g-C Wei S; Feng L; Zhang X; Sun Z; Bai H; Liu P Water Sci Technol; 2023 Dec; 88(11):2849-2861. PubMed ID: 38096073 [TBL] [Abstract][Full Text] [Related]
18. An energy efficient bi-functional electrode for continuous cation-selective capacitive deionization. Vafakhah S; Saeedikhani M; Tanhaei M; Huang S; Guo L; Chiam SY; Yang HY Nanoscale; 2020 Nov; 12(45):22917-22927. PubMed ID: 33185635 [TBL] [Abstract][Full Text] [Related]
19. Energy recovery in membrane capacitive deionization. Długołęcki P; van der Wal A Environ Sci Technol; 2013 May; 47(9):4904-10. PubMed ID: 23477563 [TBL] [Abstract][Full Text] [Related]