These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 36133144)
21. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Li H; Gao Y; Pan L; Zhang Y; Chen Y; Sun Z Water Res; 2008 Dec; 42(20):4923-8. PubMed ID: 18929385 [TBL] [Abstract][Full Text] [Related]
22. Concentration-Gradient Multichannel Flow-Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes. Kim C; Lee J; Srimuk P; Aslan M; Presser V ChemSusChem; 2017 Dec; 10(24):4914-4920. PubMed ID: 28685992 [TBL] [Abstract][Full Text] [Related]
23. Co-Co Hu X; Min X; Li X; Si M; Liu L; Zheng J; Yang W; Zhao F J Colloid Interface Sci; 2022 Jun; 616():389-400. PubMed ID: 35228044 [TBL] [Abstract][Full Text] [Related]
24. A binder free hierarchical mixed capacitive deionization electrode based on a polyoxometalate and polypyrrole for brackish water desalination. Liu N; Zhang Y; Xu X; Wang Y Dalton Trans; 2020 May; 49(19):6321-6327. PubMed ID: 32342067 [TBL] [Abstract][Full Text] [Related]
25. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. Hand S; Guest JS; Cusick RD Environ Sci Technol; 2019 Nov; 53(22):13353-13363. PubMed ID: 31657552 [TBL] [Abstract][Full Text] [Related]
26. Surface Electrochemistry of Carbon Electrodes and Faradaic Reactions in Capacitive Deionization. Kang JS; Kim S; Kang J; Joo H; Jang J; Jo K; Park S; Kim HI; Yoo SJ; Yoon J; Sung YE; Hatton TA Environ Sci Technol; 2022 Sep; 56(17):12602-12612. PubMed ID: 35998306 [TBL] [Abstract][Full Text] [Related]
27. Development of Composite Nanostructured Electrodes for Water Desalination via Membrane Capacitive Deionization. Bakola V; Kotrotsiou O; Ntziouni A; Dragatogiannis D; Plakantonaki N; Trapalis C; Charitidis C; Kiparissides C Macromol Rapid Commun; 2024 Mar; 45(6):e2300640. PubMed ID: 38184786 [TBL] [Abstract][Full Text] [Related]
28. Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents. Lee M; Fan CS; Chen YW; Chang KC; Chiueh PT; Hou CH Chemosphere; 2019 Nov; 235():413-422. PubMed ID: 31272001 [TBL] [Abstract][Full Text] [Related]
29. Electrode Materials for Desalination of Water via Capacitive Deionization. Kumar S; Aldaqqa NM; Alhseinat E; Shetty D Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202302180. PubMed ID: 37052355 [TBL] [Abstract][Full Text] [Related]
30. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer. Kim YJ; Choi JH Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691 [TBL] [Abstract][Full Text] [Related]
31. 3D-Printed river-type thick carbon electrodes for docking possible practical application-level capacitive deionization. Shi M; Lu K; Jia H; Hong X; Yan Y; Qiang H; Wang F; Xia M Sci Total Environ; 2023 Dec; 904():167339. PubMed ID: 37748601 [TBL] [Abstract][Full Text] [Related]
32. Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review. Jia B; Zhang W Nanoscale Res Lett; 2016 Dec; 11(1):64. PubMed ID: 26842797 [TBL] [Abstract][Full Text] [Related]
33. Resistance identification and rational process design in Capacitive Deionization. Dykstra JE; Zhao R; Biesheuvel PM; van der Wal A Water Res; 2016 Jan; 88():358-370. PubMed ID: 26512814 [TBL] [Abstract][Full Text] [Related]
34. High-Performance Membrane Capacitive Deionization Based on Metal-Organic Framework-Derived Hierarchical Carbon Structures. Shi W; Ye C; Xu X; Liu X; Ding M; Liu W; Cao X; Shen J; Yang HY; Gao C ACS Omega; 2018 Aug; 3(8):8506-8513. PubMed ID: 31458979 [TBL] [Abstract][Full Text] [Related]
35. Emerging Frontiers in Multichannel Membrane Capacitive Deionization: Recent Advances and Future Prospects. Kim H; Kim S; Lee B; Presser V; Kim C Langmuir; 2024 Mar; 40(9):4567-4578. PubMed ID: 38377328 [TBL] [Abstract][Full Text] [Related]
36. Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs. Phuoc NM; Jung E; Tran NAT; Lee YW; Yoo CY; Kang BG; Cho Y Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33105663 [TBL] [Abstract][Full Text] [Related]
37. Hierarchical MXene/Polypyrrole-Decorated Carbon Nanofibers for Asymmetrical Capacitive Deionization. Wang XR; Wang X; Nian HE; Chen T; Zhang L; Song S; Li JH; Wang Y ACS Appl Mater Interfaces; 2022 Nov; 14(47):53150-53164. PubMed ID: 36394639 [TBL] [Abstract][Full Text] [Related]
38. Various cell architectures of capacitive deionization: Recent advances and future trends. Tang W; Liang J; He D; Gong J; Tang L; Liu Z; Wang D; Zeng G Water Res; 2019 Mar; 150():225-251. PubMed ID: 30528919 [TBL] [Abstract][Full Text] [Related]
39. Faradaic Electrodes Open a New Era for Capacitive Deionization. Li Q; Zheng Y; Xiao D; Or T; Gao R; Li Z; Feng M; Shui L; Zhou G; Wang X; Chen Z Adv Sci (Weinh); 2020 Nov; 7(22):2002213. PubMed ID: 33240769 [TBL] [Abstract][Full Text] [Related]
40. Automation of membrane capacitive deionization process using reinforcement learning. Yoon N; Park S; Son M; Cho KH Water Res; 2022 Dec; 227():119337. PubMed ID: 36370591 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]