These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36133202)

  • 1. Spontaneous directional motion of water molecules in single-walled carbon nanotubes with a stiffness gradient.
    Chen S; Cheng Y; Zhang G; Zhang YW
    Nanoscale Adv; 2019 Mar; 1(3):1175-1180. PubMed ID: 36133202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanotubes as Thermally Induced Water Pumps.
    Oyarzua E; Walther JH; Megaridis CM; Koumoutsakos P; Zambrano HA
    ACS Nano; 2017 Oct; 11(10):9997-10002. PubMed ID: 28953353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unidirectional motion of a water nanodroplet subjected to a surface energy gradient.
    Kou J; Mei M; Lu H; Wu F; Fan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056301. PubMed ID: 23004857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy.
    Liu X; Pan X; Zhang S; Han X; Bao X
    Langmuir; 2014 Jul; 30(27):8036-45. PubMed ID: 24951088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of water molecules in carbon nanotubes under electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-propelled directed transport of C60 fullerene on the surface of the cone-shaped carbon nanotubes.
    Vaezi M; Nejat Pishkenari H
    Sci Rep; 2024 Sep; 14(1):21630. PubMed ID: 39284904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helicity and temperature effects on static properties of water molecules confined in modified carbon nanotubes.
    Huang LL; Shao Q; Lu LH; Lu XH; Zhang LZ; Wang J; Jiang SY
    Phys Chem Chem Phys; 2006 Sep; 8(33):3836-44. PubMed ID: 19817043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal gradient induced actuation in double-walled carbon nanotubes.
    Hou QW; Cao BY; Guo ZY
    Nanotechnology; 2009 Dec; 20(49):495503. PubMed ID: 19893145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Interfacial Barriers at Narrow Carbon Nanotube-Water Interfaces.
    Varanasi SR; Subramanian Y; Bhatia SK
    Langmuir; 2018 Jul; 34(27):8099-8111. PubMed ID: 29905485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysing thermophoretic transport of water for designing nanoscale-pumps.
    Rajegowda R; Sathian SP
    Phys Chem Chem Phys; 2018 Dec; 20(48):30321-30330. PubMed ID: 30484787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water–methanol separation with carbon nanotubes and electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    Nanoscale; 2015 Aug; 7(29):12659-65. PubMed ID: 26397004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-driven opening of carbon nanotubes.
    Chaban VV; Prezhdo OV
    Nanoscale; 2016 Mar; 8(11):6014-20. PubMed ID: 26927885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, dynamics, and morphology of nanostructured water confined between parallel graphene surfaces and in carbon nanotubes by applying magnetic and electric fields.
    Abbaspour M; Akbarzadeh H; Salemi S; Bahmanipour L
    Soft Matter; 2021 Mar; 17(11):3085-3095. PubMed ID: 33596282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid structure and transport properties of water inside carbon nanotubes.
    Liu Y; Wang Q; Wu T; Zhang L
    J Chem Phys; 2005 Dec; 123(23):234701. PubMed ID: 16392938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy and the driving force for the filling of carbon nanotubes with water.
    Pascal TA; Goddard WA; Jung Y
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11794-8. PubMed ID: 21709268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curvature induced L-defects in water conduction in carbon nanotubes.
    Zimmerli U; Gonnet PG; Walther JH; Koumoutsakos P
    Nano Lett; 2005 Jun; 5(6):1017-22. PubMed ID: 15943435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.
    Pérez-Hernández G; Schmidt B
    Phys Chem Chem Phys; 2013 Apr; 15(14):4995-5006. PubMed ID: 23443614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of Formation of 1-10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries.
    Liu Y; Jiang J; Pu Y; Francisco JS; Zeng XC
    ACS Nano; 2023 Apr; 17(7):6922-6931. PubMed ID: 36940168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.