These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36133260)

  • 1. Pseudocapacitive trimetallic NiCoMn-111 perovskite fluorides for advanced Li-ion supercabatteries.
    Yan T; Huang Y; Ding R; Shi W; Ying D; Jia Z; Tan C; Huang Y; Sun X; Liu E
    Nanoscale Adv; 2021 Sep; 3(19):5703-5710. PubMed ID: 36133260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion-type NiCoMn triple perovskite fluorides for advanced aqueous supercapacitors, batteries and supercapatteries.
    Jia Z; Shi W; Ding R; Yu W; Li Y; Tan C; Sun X; Liu E
    Chem Commun (Camb); 2021 Aug; 57(64):7962-7965. PubMed ID: 34286760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A F-deficient and high-Mn ternary perovskite fluoride anode with a dominant conversion mechanism for advanced Li-ion batteries.
    Huang Y; Ding R; Ying D; Huang Y; Tan C; Yan T; Sun X; Liu E
    Chem Commun (Camb); 2021 Aug; 57(62):7705-7708. PubMed ID: 34259246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Electrolytes-Assisting Aqueous Zn-Based Batteries by Pseudocapacitive Multiple Perovskite Fluorides Cathode and Charge Storage Mechanisms.
    Wang A; Ding R; Li Y; Liu M; Yang F; Zhang Y; Fang Q; Yan M; Xie J; Chen Z; Yan Z; He Y; Guo J; Sun X; Liu E
    Small; 2023 Aug; 19(33):e2302333. PubMed ID: 37166023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudocapacitance-Enhanced Storage Kinetics of 3D Anhydrous Iron (III) Fluoride as a Cathode for Li/Na-Ion Batteries.
    Zhang T; Liu Y; Chen G; Liu H; Han Y; Zhai S; Zhang L; Pan Y; Li Q; Li Q
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering doping-vacancy double defects and insights into the conversion mechanisms of an Mn-O-F ultrafine nanowire anode for enhanced Li/Na-ion storage and hybrid capacitors.
    Huang Y; Ding R; Ying D; Shi W; Huang Y; Tan C; Sun X; Gao P; Liu E
    Nanoscale Adv; 2019 Dec; 1(12):4669-4678. PubMed ID: 36133103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacant Manganese-Based Perovskite Fluorides@Reduced Graphene Oxides for Na-Ion Storage with Pseudocapacitive Conversion/Insertion Dual Mechanisms.
    Huang Y; Ding R; Ying D; Yan T; Huang Y; Tan C; Sun X; Gao P; Liu E
    Chemistry; 2021 Jul; 27(38):9954-9960. PubMed ID: 33913593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating High Initial Coulombic Efficiency, Pseudocapacitive Kinetics and Charge Storage Mechanism of Antiperovskite Carbide Ni
    Fang Q; Ding R; Yan M; Li Y; Guo J; Xie J; Zhang Y; Yan Z; He Y; Chen Z; Sun X; Liu E
    Small; 2024 Jun; ():e2403397. PubMed ID: 38925625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Energy-Density Sodium-Ion Hybrid Capacitors Enabled by Interface-Engineered Hierarchical TiO
    Feng W; Maça RR; Etacheri V
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4443-4453. PubMed ID: 31909958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MnCO
    Natarajan S; Akshay M; Aravindan V
    Small; 2023 Apr; 19(17):e2206226. PubMed ID: 36693780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A vacancy-rich perovskite fluoride K
    Tan C; Ding R; Huang Y; Yan T; Huang Y; Yang F; Sun X; Gao P; Liu E
    Chem Commun (Camb); 2021 Jun; 57(47):5830-5833. PubMed ID: 34002733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mn and Co co-doped perovskite fluorides KNiF
    Fan H; Zhang X; Wang Y; Gao R; Lang J
    J Colloid Interface Sci; 2019 Dec; 557():546-555. PubMed ID: 31550647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards fast-charging technologies in Li
    Huang H; Niederberger M
    Nanoscale; 2019 Nov; 11(41):19225-19240. PubMed ID: 31532434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudocapacitance of TiO
    Que LF; Yu FD; Wang ZB; Gu DM
    Small; 2018 Apr; 14(17):e1704508. PubMed ID: 29611299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.
    Sun F; Liu X; Wu HB; Wang L; Gao J; Li H; Lu Y
    Nano Lett; 2018 Jun; 18(6):3368-3376. PubMed ID: 29708761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile potassium vanadium fluorophosphate (KVPO
    Cai J; Ding Y; Bai R; Zhang C; Zhang X; Sun H; Wang G
    J Colloid Interface Sci; 2023 Dec; 651():534-543. PubMed ID: 37562296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conversion and pseudocapacitance-featuring cost-effective perovskite fluoride KCuF
    Huang Y; Ding R; Xu Q; Shi W; Ying D; Huang Y; Yan T; Tan C; Sun X; Liu E
    Dalton Trans; 2021 Jul; 50(25):8671-8675. PubMed ID: 34132293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peapod-like Li
    Shen L; Lv H; Chen S; Kopold P; van Aken PA; Wu X; Maier J; Yu Y
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28466539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.