These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36133260)

  • 21. Li-Ion Capacitor Integrated with Nano-network-Structured Ni/NiO/C Anode and Nitrogen-Doped Carbonized Metal-Organic Framework Cathode with High Power and Long Cyclability.
    Cheng CF; Chen YM; Zou F; Liu K; Xia Y; Huang YF; Tung WY; Krishnan MR; Vogt BD; Wang CL; Ho RM; Zhu Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30694-30702. PubMed ID: 31373480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors.
    Halim M; Liu G; Ardhi REA; Hudaya C; Wijaya O; Lee SH; Kim AY; Lee JK
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20566-20576. PubMed ID: 28557417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium.
    Ding J; Hu W; Paek E; Mitlin D
    Chem Rev; 2018 Jul; 118(14):6457-6498. PubMed ID: 29953230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities.
    Wang G; Oswald S; Löffler M; Müllen K; Feng X
    Adv Mater; 2019 Apr; 31(14):e1807712. PubMed ID: 30767311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
    Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudocapacitive TiNb
    Li Y; Wang Y; Cai R; Yu C; Zhang J; Wu J; Tiwary CS; Cui J; Zhang Y; Wu Y
    J Colloid Interface Sci; 2022 Mar; 610():385-394. PubMed ID: 34923276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All alginate-derived high-performance T-Nb
    Li M; Fang Y; Li J; Sun B; Du J; Liu Q; Zhang D
    RSC Adv; 2022 Feb; 12(10):5743-5748. PubMed ID: 35424551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Na
    Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe
    Zhang HJ; Wang YK; Kong LB
    Nanoscale; 2019 Apr; 11(15):7263-7276. PubMed ID: 30932121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage.
    Dong L; Yang W; Yang W; Wang C; Li Y; Xu C; Wan S; He F; Kang F; Wang G
    Nanomicro Lett; 2019 Oct; 11(1):94. PubMed ID: 34138030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Pseudocapacitance in FeOOH/rGO Composites with Superior Performance for High Rate Anode in Li-Ion Battery.
    Qi H; Cao L; Li J; Huang J; Xu Z; Cheng Y; Kong X; Yanagisawa K
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35253-35263. PubMed ID: 27977130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors.
    Wang H; Zhu C; Chao D; Yan Q; Fan HJ
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 28940422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high-power lithium-ion hybrid capacitor based on a hollow N-doped carbon nanobox anode and its porous analogue cathode.
    Liang T; Wang H; Fei R; Wang R; He B; Gong Y; Yan C
    Nanoscale; 2019 Nov; 11(43):20715-20724. PubMed ID: 31642836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a Self-Charging Lithium-Ion Battery Using Perovskite Solar Cells.
    Kim Y; Seo H; Kim E; Kim J; Seo I
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32872543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conversion/Alloying Pseudocapacitance-Dominated Perovskite KZnF
    Ying D; Ding R; Huang Y; Yan T; Huang Y; Tan C; Sun X; Gao P; Liu E
    Chemistry; 2020 Mar; 26(13):2798-2802. PubMed ID: 31867759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructure and Advanced Energy Storage: Elaborate Material Designs Lead to High-Rate Pseudocapacitive Ion Storage.
    Gan Z; Yin J; Xu X; Cheng Y; Yu T
    ACS Nano; 2022 Apr; 16(4):5131-5152. PubMed ID: 35293209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors.
    Wu M; Zheng W; Hu X; Zhan F; He Q; Wang H; Zhang Q; Chen L
    Small; 2022 Dec; 18(50):e2205101. PubMed ID: 36285775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High performance Li-ion capacitor fabricated with dual graphene-based materials.
    Sui D; Wu M; Liu Y; Yang Y; Zhang H; Ma Y; Zhang L; Chen Y
    Nanotechnology; 2021 Jan; 32(1):015403. PubMed ID: 32947263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.