These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36133292)

  • 1. Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice.
    Ding C; Gao H; Geng W; Zhao M
    Nanoscale Adv; 2021 Feb; 3(4):1127-1135. PubMed ID: 36133292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous Dirac Plasmons in 1D Topological Electrides.
    Wang J; Sui X; Gao S; Duan W; Liu F; Huang B
    Phys Rev Lett; 2019 Nov; 123(20):206402. PubMed ID: 31809077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dirac node lines in two-dimensional Lieb lattices.
    Yang B; Zhang X; Zhao M
    Nanoscale; 2017 Jun; 9(25):8740-8746. PubMed ID: 28616940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Plasmonics: Broadband Dirac Plasmons in Borophene.
    Lian C; Hu SQ; Zhang J; Cheng C; Yuan Z; Gao S; Meng S
    Phys Rev Lett; 2020 Sep; 125(11):116802. PubMed ID: 32976016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental realization and characterization of an electronic Lieb lattice.
    Slot MR; Gardenier TS; Jacobse PH; van Miert GCP; Kempkes SN; Zevenhuizen SJM; Smith CM; Vanmaekelbergh D; Swart I
    Nat Phys; 2017 Jul; 13(7):672-676. PubMed ID: 28706560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag
    Yang T; Luo YZ; Wang Z; Zhu T; Pan H; Wang S; Lau SP; Feng YP; Yang M
    Nanoscale; 2021 Sep; 13(33):14008-14015. PubMed ID: 34477681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism.
    Jiang W; Huang H; Liu F
    Nat Commun; 2019 May; 10(1):2207. PubMed ID: 31101812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density-independent plasmons for terahertz-stable topological metamaterials.
    Wang J; Sui X; Duan W; Liu F; Huang B
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33952701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Dirac cones and Lifshitz transition in a two-dimensional Cairo lattice as a Hawking evaporation analogue.
    Shao X; Sun L; Ma X; Feng X; Gao H; Ding C; Zhao M
    J Phys Condens Matter; 2021 Jul; 33(36):. PubMed ID: 34161939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral plasmons without magnetic field.
    Song JC; Rudner MS
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4658-63. PubMed ID: 27071090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dirac cones in a snub trihexagonal tiling lattice with reflective symmetry breaking.
    Yang B; Zhang X; Wang A; Zhao M
    J Phys Condens Matter; 2019 Apr; 31(15):155001. PubMed ID: 30677002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Plasmons in Laterally Confined 2D Electron Systems.
    Zagorodnev IV; Zabolotnykh AA; Rodionov DA; Volkov VA
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Realization of Two-Dimensional Buckled Lieb Lattice.
    Feng H; Liu C; Zhou S; Gao N; Gao Q; Zhuang J; Xu X; Hu Z; Wang J; Chen L; Zhao J; Dou SX; Du Y
    Nano Lett; 2020 Apr; 20(4):2537-2543. PubMed ID: 32182079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmons in the van der Waals charge-density-wave material 2H-TaSe
    Song C; Yuan X; Huang C; Huang S; Xing Q; Wang C; Zhang C; Xie Y; Lei Y; Wang F; Mu L; Zhang J; Xiu F; Yan H
    Nat Commun; 2021 Jan; 12(1):386. PubMed ID: 33452268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain engineering of hyperbolic plasmons in monolayer carbon phosphide: a first-principles study.
    Dehdast M; Neek-Amal M; Stampfl C; Pourfath M
    Nanoscale; 2023 Feb; 15(5):2234-2247. PubMed ID: 36628616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable and low-loss correlated plasmons in Mott-like insulating oxides.
    Asmara TC; Wan D; Zhao Y; Majidi MA; Nelson CT; Scott MC; Cai Y; Yan B; Schmidt D; Yang M; Zhu T; Trevisanutto PE; Motapothula MR; Feng YP; Breese MBH; Sherburne M; Asta M; Minor A; Venkatesan T; Rusydi A
    Nat Commun; 2017 May; 8():15271. PubMed ID: 28497786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Nodal-Line Plasmons in ZrSiS.
    Xue S; Wang M; Li Y; Zhang S; Jia X; Zhou J; Shi Y; Zhu X; Yao Y; Guo J
    Phys Rev Lett; 2021 Oct; 127(18):186802. PubMed ID: 34767385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional honeycomb-kagome Ta
    Zhang L; Zhang CW; Zhang SF; Ji WX; Li P; Wang PJ
    Nanoscale; 2019 Mar; 11(12):5666-5673. PubMed ID: 30865199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Newly discovered graphyne allotrope with rare and robust Dirac node loop.
    Yan P; Ouyang T; He C; Li J; Zhang C; Tang C; Zhong J
    Nanoscale; 2021 Feb; 13(6):3564-3571. PubMed ID: 33522533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.