BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36133379)

  • 1. Cellulose paper support with dual-layered nano-microstructures for enhanced plasmonic photothermal heating and solar vapor generation.
    Huang Y; Morishita Y; Uetani K; Nogi M; Koga H
    Nanoscale Adv; 2020 Jun; 2(6):2339-2346. PubMed ID: 36133379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Titanium Nitride Nano-enabled Membranes with High Structural Stability for Efficient Photothermal Desalination.
    Farid MU; Kharraz JA; An AK
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3805-3815. PubMed ID: 33444505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar-driven desalination using salt-rejecting plasmonic cellulose nanofiber membrane.
    Ku BJ; Kim DH; Yasin AS; Mnoyan A; Kim MJ; Kim YJ; Ra H; Lee K
    J Colloid Interface Sci; 2023 Mar; 634():543-552. PubMed ID: 36549203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seawater Desalination by Interfacial Solar Vapor Generation Method Using Plasmonic Heating Nanocomposites.
    Xu Z; Rao N; Tang CY; Law WC
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32962173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Salt-Rejecting Photothermal Paper Based on Reduced Graphene Oxide and Hydroxyapatite Nanowires for High-Efficiency Solar Energy-Driven Vapor Generation and Stable Desalination.
    Xiong ZC; Zhu YJ; Qin DD; Yang RL
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32556-32565. PubMed ID: 32648729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination.
    Zhang L; Xing J; Wen X; Chai J; Wang S; Xiong Q
    Nanoscale; 2017 Sep; 9(35):12843-12849. PubMed ID: 28832043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilayer Designed Paper-Based Solar Evaporator for Efficient Seawater Desalination.
    Qin Y; Li Y; Wu R; Wang X; Qin J; Fu Y; Qin M; Wang Z; Zhang Y; Zhang F
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator.
    Nabeela K; Thorat MN; Backer SN; Ramachandran AM; Thomas RT; Preethikumar G; Mohamed AP; Asok A; Dastager SG; Pillai S
    ACS Appl Bio Mater; 2021 May; 4(5):4373-4383. PubMed ID: 35006849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Carbonized Loofah Sponge Architectures with Plasmonic Cu Nanoparticles Encapsulated in Graphitic Layers for Highly Efficient Solar Vapor Generation.
    Ren L; Yi X; Yang Z; Wang D; Liu L; Ye J
    Nano Lett; 2021 Feb; 21(4):1709-1715. PubMed ID: 33586984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biorenewable Polymer-Based Light-Absorbing Porous Hydrogel for Efficient Solar Steam Desalination.
    Jeon J; Lee SH; Lee SR; Seo TH; Kim YK
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30692-30706. PubMed ID: 37326512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose-based evaporator with dual boost of water transportation and photothermal conversion for highly solar-driven evaporation.
    Wei Z; Wan Z; Cai C; Fu Y
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):125018. PubMed ID: 37224905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and Highly Efficient Bilayer Photothermal Paper for Water Desalination and Purification: Self-Floating, Rapid Water Transport, and Localized Heat.
    Huang H; Zhao L; Yu Q; Lin P; Xu J; Yin X; Chen S; Wang H; Wang L
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11204-11213. PubMed ID: 32030971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchically Designed Three-Dimensional Composite Structure on a Cellulose-Based Solar Steam Generator.
    Jin M; Wu Z; Guan F; Zhang D; Wang B; Sheng N; Qu X; Deng L; Chen S; Chen Y; Wang H
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12284-12294. PubMed ID: 35254828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic photothermal conversion and photocatalysis in 2D/2D MXene/Bi
    Liu Y; Qu SZ; Zhou ZR; Song XP; Ma L; Ding SJ; Wang QQ
    Nanoscale; 2023 Sep; 15(36):14886-14895. PubMed ID: 37650354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination.
    Qin DD; Zhu YJ; Yang RL; Xiong ZC
    Nanoscale; 2020 Mar; 12(12):6717-6728. PubMed ID: 32163069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cheap, facile, and upscalable activated carbon-based photothermal layers for solar steam generation.
    Mnoyan A; Choi M; Kim DH; Ku BJ; Kim H; Lee KJ; Yasin AS; Nam S; Lee K
    RSC Adv; 2020 Nov; 10(69):42432-42440. PubMed ID: 35692728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A water supply tunable bilayer evaporator for high-quality solar vapor generation.
    Zhang X; Li T; Liao W; Chen D; Deng Z; Liu X; Shang B
    Nanoscale; 2022 Jun; 14(21):7913-7918. PubMed ID: 35593223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Nanoparticles Boost Solar-to-Electricity Generation at Ambient Conditions.
    Kashyap RK; Pillai PP
    Nano Lett; 2024 May; 24(18):5585-5592. PubMed ID: 38662652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Functional Solar-to-Steam Generation and SERS Detection Substrate Based on Plasmonic Nanostructure.
    Trinh BT; Cho H; Lee D; Omelianovych O; Kim T; Nguyen SK; Choi HS; Kim H; Yoon I
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation.
    Chen M; Wu Y; Song W; Mo Y; Lin X; He Q; Guo B
    Nanoscale; 2018 Mar; 10(13):6186-6193. PubMed ID: 29561049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.