These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36133417)

  • 1. Electrostatically-blind quantitative piezoresponse force microscopy free of distributed-force artifacts.
    Killgore JP; Robins L; Collins L
    Nanoscale Adv; 2022 Apr; 4(8):2036-2045. PubMed ID: 36133417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy.
    Zeng Q; Wang H; Xiong Z; Huang Q; Lu W; Sun K; Fan Z; Zeng K
    Adv Sci (Weinh); 2021 Apr; 8(8):2003993. PubMed ID: 33898182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the Electromechanical Measurements by Piezoresponse Force Microscopy.
    Buragohain P; Lu H; Richter C; Schenk T; Kariuki P; Glinsek S; Funakubo H; Íñiguez J; Defay E; Schroeder U; Gruverman A
    Adv Mater; 2022 Nov; 34(47):e2206237. PubMed ID: 36210741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy.
    Seol D; Kang S; Sun C; Kim Y
    Ultramicroscopy; 2019 Dec; 207():112839. PubMed ID: 31494481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic behaviour in piezoresponse force microscopy.
    Jesse S; Baddorf AP; Kalinin SV
    Nanotechnology; 2006 Mar; 17(6):1615-28. PubMed ID: 26558568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoelectric displacement mapping of compliant surfaces by constant-excitation frequency-modulation piezoresponse force microscopy.
    Labardi M; Magnani A; Capaccioli S
    Nanotechnology; 2020 Feb; 31(7):075707. PubMed ID: 31665710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.
    Balke N; Jesse S; Yu P; Ben Carmichael ; Kalinin SV; Tselev A
    Nanotechnology; 2016 Oct; 27(42):425707. PubMed ID: 27631885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning-fork-based piezoresponse force microscopy.
    Labardi M; Capaccioli S
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34284362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation.
    Calahorra Y; Kim W; Vukajlovic-Plestina J; Fontcuberta I Morral A; Kar-Narayan S
    Nanotechnology; 2020 Oct; 31(40):404003. PubMed ID: 32521513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector piezoresponse force microscopy.
    Kalinin SV; Rodriguez BJ; Jesse S; Shin J; Baddorf AP; Gupta P; Jain H; Williams DB; Gruverman A
    Microsc Microanal; 2006 Jun; 12(3):206-20. PubMed ID: 17481357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic Contribution to the Photo-Assisted Piezoresponse Force Microscopy by Photo-Induced Surface Charge.
    Loo CC; Ng SS; Chang WS
    Microsc Microanal; 2022 May; ():1-5. PubMed ID: 35616223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of frequency-modulated atomic force microscopy for interpretation of noncontact piezoresponse measurements.
    Labardi M
    Nanotechnology; 2020 Mar; 31(24):245705. PubMed ID: 32109904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution angle-resolved lateral piezoresponse force microscopy: Visualization of in-plane piezoresponse vectors.
    Chu K; Yang CH
    Rev Sci Instrum; 2018 Dec; 89(12):123704. PubMed ID: 30599567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher-order electromechanical response of thin films by contact resonance piezoresponse force microscopy.
    Harnagea C; Pignolet A; Alexe M; Hesse D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2309-22. PubMed ID: 17186913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Electromechanical Atomic Force Microscopy.
    Collins L; Liu Y; Ovchinnikova OS; Proksch R
    ACS Nano; 2019 Jul; 13(7):8055-8066. PubMed ID: 31268678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative probe for in-plane piezoelectric coupling in 2D materials.
    Yarajena SS; Biswas R; Raghunathan V; Naik AK
    Sci Rep; 2021 Mar; 11(1):7066. PubMed ID: 33782418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy.
    Rodriguez BJ; Jesse S; Baddorf AP; Kalinin SV
    Phys Rev Lett; 2006 Jun; 96(23):237602. PubMed ID: 16803404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximizing Information: A Machine Learning Approach for Analysis of Complex Nanoscale Electromechanical Behavior in Defect-Rich PZT Films.
    Zhang F; Williams KN; Edwards D; Naden AB; Yao Y; Neumayer SM; Kumar A; Rodriguez BJ; Bassiri-Gharb N
    Small Methods; 2021 Dec; 5(12):e2100552. PubMed ID: 34928037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy.
    Kwon J; Cho H
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6680-6689. PubMed ID: 33320620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-Correlated Piezoelectricity in Quasi-Two-Dimensional Zinc Oxide Nanosheets.
    Carlos C; Li J; Zhang Z; Berg KJ; Wang Y; Wang X
    Nano Lett; 2023 Jul; 23(13):6148-6155. PubMed ID: 37384822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.