These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36133459)

  • 21. Multi-Responsive Afterglows from Aqueous Processable Amorphous Polysaccharide Films.
    Ren C; Wang Z; Ou H; Wang T; Zhao Z; Wei Y; Yuan H; Tan Y; Yuan WZ
    Small Methods; 2024 Feb; 8(2):e2300243. PubMed ID: 37491782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile, Quick, and Gram-Scale Synthesis of Ultralong-Lifetime Room-Temperature-Phosphorescent Carbon Dots by Microwave Irradiation.
    Jiang K; Wang Y; Gao X; Cai C; Lin H
    Angew Chem Int Ed Engl; 2018 May; 57(21):6216-6220. PubMed ID: 29637675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile Synthesis and Multiple Application of Ultralong-Afterglow Room Temperature Phosphorescence Aggregate Carbon Dots from Simple Raw Materials.
    Zhu W; Wang L; Yang W; Chen Y; Liu Z; Li Y; Xue Y
    J Fluoresc; 2023 Oct; ():. PubMed ID: 37861967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout.
    Wang Y; Jiang K; Du J; Zheng L; Li Y; Li Z; Lin H
    Nanomicro Lett; 2021 Sep; 13(1):198. PubMed ID: 34529154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-Lived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials.
    Wang K; Qu L; Yang C
    Small; 2023 Aug; 19(31):e2206429. PubMed ID: 36609989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Room Temperature Phosphorescent Nanofiber Membranes by Bio-Fermentation.
    Nie X; Gong J; Ding Z; Wu B; Wang WJ; Gao F; Zhang G; Alam P; Xiong Y; Zhao Z; Qiu Z; Tang BZ
    Adv Sci (Weinh); 2024 Jul; ():e2405327. PubMed ID: 38952072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Achieving Bright and Long-Lived Aqueous Room-Temperature Phosphorescence of Carbon Nitrogen Dots Through In Situ Host-Guest Binding.
    Li J; Zhou H; Jin S; Xu B; Teng Q; Li C; Li J; Li Q; Gao Z; Zhu C; Wang Z; Su W; Yuan F
    Adv Mater; 2024 Jun; 36(24):e2401493. PubMed ID: 38422537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-Scale Preparation for Multicolor Stimulus-Responsive Room-Temperature Phosphorescence Paper via Cellulose Heterogeneous Reaction.
    Gao Q; Shi M; Lü Z; Zhao Q; Chen G; Bian J; Qi H; Ren J; Lü B; Peng F
    Adv Mater; 2023 Nov; 35(47):e2305126. PubMed ID: 37639319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Full-color Persistent Room-temperature Phosphorescence from Carbon Dot Composites Based on a Single Nonaromatic Carbon Source.
    Wang X; Wang S; Huang Y; Huang L; Sun J; Lin Z
    Chem Asian J; 2023 Jan; 18(2):e202201027. PubMed ID: 36451290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color.
    Li D; Yang Y; Yang J; Fang M; Tang BZ; Li Z
    Nat Commun; 2022 Jan; 13(1):347. PubMed ID: 35039504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lifetime-tunable room-temperature phosphorescence of polyaniline carbon dots in adjustable polymer matrices.
    Gou H; Liu Y; Zhang G; Liao Q; Huang X; Ning F; Ke C; Meng Z; Xi K
    Nanoscale; 2019 Oct; 11(39):18311-18319. PubMed ID: 31573008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors.
    Qu J; Zhang X; Zhang S; Wang Z; Yu Y; Ding H; Tang Z; Heng X; Wang R; Jing S
    Nanoscale Adv; 2021 Aug; 3(17):5053-5061. PubMed ID: 36132350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prepared carbon dots from wheat straw for detection of Cu
    Shi J; Zhou Y; Ning J; Hu G; Zhang Q; Hou Y; Zhou Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121597. PubMed ID: 35820342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Matrix-Free and Highly Efficient Room-Temperature Phosphorescence Carbon Dots towards Information Encryption and Decryption.
    Qi H; Zhang H; Wu X; Tang Y; Qian M; Wang K; Qi H
    Chem Asian J; 2020 Apr; 15(8):1281-1284. PubMed ID: 32080979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiemissive Room-Temperature Phosphorescent Carbon Dots@ZnAl
    Song Z; Liu Y; Lin X; Zhou Z; Zhang X; Zhuang J; Lei B; Hu C
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34705-34713. PubMed ID: 34254790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visible-Light-Excited Room Temperature Phosphorescent Carbon Dots.
    Hu S; Jiang K; Wang Y; Wang S; Li Z; Lin H
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32143524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hour-Level Persistent Multicolor Phosphorescence Enabled by Carbon Dot-Based Nanocomposites Through a Multi-Confinement-Based Approach.
    Hu H; Li J; Gong X
    Small; 2024 Jun; 20(23):e2308457. PubMed ID: 38126697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Urea-formaldehyde resin room temperature phosphorescent material with ultra-long afterglow and adjustable phosphorescence performance.
    Xu W; Wang B; Liu S; Fang W; Jia Q; Liu J; Bo C; Yan X; Li Y; Chen L
    Nat Commun; 2024 May; 15(1):4415. PubMed ID: 38789444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution and fabrication of carbon dot-based room temperature phosphorescence materials.
    Li J; Wu Y; Gong X
    Chem Sci; 2023 Apr; 14(14):3705-3729. PubMed ID: 37035697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly transparent cellulose-based phosphorescent materials with tunable afterglow colors and white emission.
    Wang X; Meng X; Cui T; Hu Q; Jin B; He Y; Zhu X; Ye C
    Carbohydr Polym; 2024 Oct; 341():122309. PubMed ID: 38876712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.