BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36133464)

  • 1. Robust charge spatial separation and linearly tunable band gap of low-energy tube-edge phosphorene nanoribbon.
    Xia M; Liu H; Wang L; Li S; Gao J; Su Y; Zhao J
    Nanoscale Adv; 2021 Jul; 3(15):4416-4423. PubMed ID: 36133464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure and elastic properties of phosphorene edges.
    Sorkin V; Zhang YW
    Nanotechnology; 2015 Jun; 26(23):235707. PubMed ID: 25994387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum manifestations in electronic properties of bilayer phosphorene nanoribbons.
    Zhang J; Li SQ; Liu H; Li M; Gao J
    Phys Chem Chem Phys; 2023 Jan; 25(2):1214-1219. PubMed ID: 36524708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantum confinement effects on the electronic properties of monolayer GeS nanoribbon with tube-edged reconstruction.
    Kong W; Zhang Y; Jiang X; Su Y; Liu H; Gao J
    Nanotechnology; 2022 May; ():. PubMed ID: 35584618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling Effect of Phosphorene Nanoribbon - Uncovering the Origin of Asymmetric Current Transport.
    Lv Y; Chang S; Huang Q; Wang H; He J
    Sci Rep; 2016 Nov; 6():38009. PubMed ID: 27897230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal Zigzag Edge Reconstruction of an α-Phase Puckered Monolayer and Its Resulting Robust Spatial Charge Separation.
    Zhang Y; Zhao Y; Bai Y; Gao J; Zhao J; Zhang YW
    Nano Lett; 2021 Oct; 21(19):8095-8102. PubMed ID: 34505776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons.
    Han X; Stewart HM; Shevlin SA; Catlow CR; Guo ZX
    Nano Lett; 2014 Aug; 14(8):4607-14. PubMed ID: 24992160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons.
    Kaur S; Kumar A; Srivastava S; Pandey R; Tankeshwar K
    Nanotechnology; 2018 Apr; 29(15):155701. PubMed ID: 29388562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.
    Hu W; Lin L; Zhang R; Yang C; Yang J
    J Am Chem Soc; 2017 Nov; 139(43):15429-15436. PubMed ID: 29027456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eliminating Edge Electronic and Phonon States of Phosphorene Nanoribbon by Unique Edge Reconstruction.
    Li SQ; Liu X; Wang X; Liu H; Zhang G; Zhao J; Gao J
    Small; 2022 Jan; 18(2):e2105130. PubMed ID: 34862720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically Sharp, Closed Bilayer Phosphorene Edges by Self-Passivation.
    Lee S; Lee Y; Ding LP; Lee K; Ding F; Kim K
    ACS Nano; 2022 Aug; 16(8):12822-12830. PubMed ID: 35904253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower Limits of Contact Resistance in Phosphorene Nanodevices with Edge Contacts.
    Poljak M; Matić M; Župančić T; Zeljko A
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and optical responses of quasi-one-dimensional phosphorene nanoribbons to strain and electric field.
    Zhang L; Hao Y
    Sci Rep; 2018 Apr; 8(1):6089. PubMed ID: 29666507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-one-dimensional phosphorene nanoribbons grown on silicon by space-confined chemical vapor transport.
    Du K; Wang M; Liang Z; Lv Q; Hou H; Lei S; Hussain S; Liu G; Liu J; Qiao G
    Chem Commun (Camb); 2023 Feb; 59(17):2433-2436. PubMed ID: 36723200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic properties of phosphorene nanoribbons with nanoholes.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2018 Feb; 8(14):7486-7493. PubMed ID: 35539136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Half metallicity in BC2)N nanoribbons: stability, electronic structures, and magnetism.
    Lai L; Lu J
    Nanoscale; 2011 Jun; 3(6):2583-8. PubMed ID: 21552611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain engineering on transmission carriers of monolayer phosphorene.
    Zhang W; Li F; Hu J; Zhang P; Yin J; Tang X; Jiang Y; Wu B; Ding Y
    J Phys Condens Matter; 2017 Nov; 29(46):465501. PubMed ID: 28937360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of phosphorene nanoribbons.
    Watts MC; Picco L; Russell-Pavier FS; Cullen PL; Miller TS; Bartuś SP; Payton OD; Skipper NT; Tileli V; Howard CA
    Nature; 2019 Apr; 568(7751):216-220. PubMed ID: 30971839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction.
    Macdonald TJ; Clancy AJ; Xu W; Jiang Z; Lin CT; Mohan L; Du T; Tune DD; Lanzetta L; Min G; Webb T; Ashoka A; Pandya R; Tileli V; McLachlan MA; Durrant JR; Haque SA; Howard CA
    J Am Chem Soc; 2021 Dec; 143(51):21549-21559. PubMed ID: 34919382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.