These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36133468)
1. Improved performance of lithium-sulfur batteries by employing a sulfonated carbon nanoparticle-modified glass fiber separator. Ponnada S; Kiai MS; Gorle DB; Nowduri A Nanoscale Adv; 2021 Jul; 3(15):4492-4501. PubMed ID: 36133468 [TBL] [Abstract][Full Text] [Related]
2. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery. Lu Y; Gu S; Guo J; Rui K; Chen C; Zhang S; Jin J; Yang J; Wen Z ACS Appl Mater Interfaces; 2017 May; 9(17):14878-14888. PubMed ID: 28406612 [TBL] [Abstract][Full Text] [Related]
3. Flexible Carbon Nanotube Modified Separator for High-Performance Lithium-Sulfur Batteries. Liu B; Wu X; Wang S; Tang Z; Yang Q; Hu GH; Xiong C Nanomaterials (Basel); 2017 Jul; 7(8):. PubMed ID: 28933721 [TBL] [Abstract][Full Text] [Related]
4. Research Progress on Multifunctional Modified Separator for Lithium-Sulfur Batteries. Wang Y; Ai R; Wang F; Hu X; Zeng Y; Hou J; Zhao J; Zhang Y; Zhang Y; Li X Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850275 [TBL] [Abstract][Full Text] [Related]
5. Tin sulfide modified separator as an efficient polysulfide trapper for stable cycling performance in Li-S batteries. Moorthy B; Kwon S; Kim JH; Ragupathy P; Lee HM; Kim DK Nanoscale Horiz; 2019 Jan; 4(1):214-222. PubMed ID: 32254159 [TBL] [Abstract][Full Text] [Related]
6. Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium-sulfur batteries. Deng X; Li Y; Li L; Qiao S; Lei D; Shi X; Zhang F Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33765671 [TBL] [Abstract][Full Text] [Related]
7. MoS Ghazi ZA; He X; Khattak AM; Khan NA; Liang B; Iqbal A; Wang J; Sin H; Li L; Tang Z Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28318064 [TBL] [Abstract][Full Text] [Related]
8. A rational design of the coupling mechanism of physical adsorption and chemical charge effect for high-performance lithium-sulfur batteries. Feng G; Liu X; Wang Y; Wu Z; Wu C; Li R; Chen Y; Guo X; Zhong B; Li J RSC Adv; 2019 Apr; 9(22):12710-12717. PubMed ID: 35515854 [TBL] [Abstract][Full Text] [Related]
9. Double-Layered Modified Separators as Shuttle Suppressing Interlayers for Lithium-Sulfur Batteries. Deng C; Wang Z; Wang S; Yu J; Martin DJ; Nanjundan AK; Yamauchi Y ACS Appl Mater Interfaces; 2019 Jan; 11(1):541-549. PubMed ID: 30561190 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional Vanadium Nitride-Modified Separator for High-Performance Lithium-Sulfur Batteries. Liu S; Liu Y; Zhang X; Shen M; Liu X; Gao X; Hou L; Yuan C Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668150 [TBL] [Abstract][Full Text] [Related]
11. Sulfonic acid functionalized covalent organic frameworks for lithium-sulfur battery separator and oxygen evolution electrocatalyst. Xia T; Wu Z; Liang Y; Wang W; Li Y; Tian X; Feng L; Sui Z; Chen Q J Colloid Interface Sci; 2023 Sep; 645():146-153. PubMed ID: 37148680 [TBL] [Abstract][Full Text] [Related]
12. Introduced Hierarchically Ordered Porous Architecture on a Separator as an Efficient Polysulfide Trap toward High-Mass-Loading Li-S Batteries. Zhang Y; Lin S; Xiao J; Hu X ACS Appl Mater Interfaces; 2024 Jan; 16(3):3888-3900. PubMed ID: 38196337 [TBL] [Abstract][Full Text] [Related]
13. Nano-MgO/AB decorated separator to suppress shuttle effect of lithium-sulfur battery. Sun W; Sun X; Peng Q; Wang H; Ge Y; Akhtar N; Huang Y; Wang K Nanoscale Adv; 2019 Apr; 1(4):1589-1597. PubMed ID: 36132613 [TBL] [Abstract][Full Text] [Related]
14. Fast polysulfide catalytic conversion and self-repairing ability for high loading lithium-sulfur batteries using a permselective coating layer modified separator. Zeng FL; Wang F; Li N; Song KM; Chang S; Shi L; Zhou XY; Wang WK; Jin ZQ; Wang AB; Yuan NY; Ding JN Nanoscale; 2021 Oct; 13(41):17592-17602. PubMed ID: 34661594 [TBL] [Abstract][Full Text] [Related]
15. NiFe Jiang W; Dong L; Liu S; Zhao S; Han K; Zhang W; Pan K; Zhang L Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458055 [TBL] [Abstract][Full Text] [Related]
16. CoO/MoO Jiang Y; Du M; Geng P; Sun B; Zhu R; Pang H J Colloid Interface Sci; 2024 Jun; 664():617-625. PubMed ID: 38490037 [TBL] [Abstract][Full Text] [Related]
17. Cobalt-Tungsten Bimetallic Carbide Nanoparticles as Efficient Catalytic Material for High-Performance Lithium-Sulfur Batteries. Zhao P; Zhang Z; He H; Yu Y; Li X; Xie W; Yang Z; Cai J ChemSusChem; 2019 Nov; 12(21):4866-4873. PubMed ID: 31420969 [TBL] [Abstract][Full Text] [Related]
18. Investigating the Electrocatalysis of a Ti Zhou HY; Sui ZY; Amin K; Lin LW; Wang HY; Han BH ACS Appl Mater Interfaces; 2020 Mar; 12(12):13904-13913. PubMed ID: 32108468 [TBL] [Abstract][Full Text] [Related]
19. Polyoxometalates/Active Carbon Thin Separator for Improving Cycle Performance of Lithium-Sulfur Batteries. Yao W; Liu L; Wu X; Qin C; Xie H; Su Z ACS Appl Mater Interfaces; 2018 Oct; 10(42):35911-35918. PubMed ID: 30259731 [TBL] [Abstract][Full Text] [Related]
20. High-Performance Lithium-Sulfur Batteries With an IPA/AC Modified Separator. Guo Y; Jiang A; Tao Z; Yang Z; Zeng Y; Xiao J Front Chem; 2018; 6():222. PubMed ID: 29963549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]