These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36133494)

  • 1. A universal polymer shell-isolated nanoparticle (SHIN) design for single particle spectro-electrochemical SERS sensing using different core shapes.
    Boccorh DK; Macdonald PA; Boyle CW; Wain AJ; Berlouis LEA; Wark AW
    Nanoscale Adv; 2021 Nov; 3(22):6415-6426. PubMed ID: 36133494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitatively Revealing the Anomalous Enhancement in Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy Using Single-Nanoparticle Spectroscopy.
    Hu S; Wang J; Zhang YJ; Wen BY; Wu SS; Radjenovic PM; Yang Z; Ren B; Li JF
    ACS Nano; 2022 Dec; 16(12):21388-21396. PubMed ID: 36468912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.
    Li JF; Zhang YJ; Ding SY; Panneerselvam R; Tian ZQ
    Chem Rev; 2017 Apr; 117(7):5002-5069. PubMed ID: 28271881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications.
    Li JF; Anema JR; Wandlowski T; Tian ZQ
    Chem Soc Rev; 2015 Dec; 44(23):8399-409. PubMed ID: 26426491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
    Krajczewski J; Kudelski A
    Front Chem; 2019; 7():410. PubMed ID: 31214580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of Gold Nanostar Cores Within Silica Shells and Its Impact on Solid-State SERS and Nonenzymatic Catalytic Sensing.
    Dey S; Ghosh SK; Satpati B
    Langmuir; 2024 Jul; ():. PubMed ID: 39024338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of gold nanoparticles coated with ultrathin and chemically inert dielectric shells for SHINERS applications.
    Li JF; Li SB; Anema JR; Yang ZL; Huang YF; Ding Y; Wu YF; Zhou XS; Wu DY; Ren B; Wang ZL; Tian ZQ
    Appl Spectrosc; 2011 Jun; 65(6):620-6. PubMed ID: 21639983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Star-shaped plasmonic nanostructures: New, simply synthetized materials for Raman analysis of surfaces.
    Krajczewski J; Michałowska A; Kudelski A
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117469. PubMed ID: 31450224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces.
    Krajczewski J; Kołątaj K; Pietrasik S; Kudelski A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():1-7. PubMed ID: 29202354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Li JF; Tian XD; Li SB; Anema JR; Yang ZL; Ding Y; Wu YF; Zeng YM; Chen QZ; Ren B; Wang ZL; Tian ZQ
    Nat Protoc; 2013 Jan; 8(1):52-65. PubMed ID: 23237829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally Stable TiO
    Hartman T; Weckhuysen BM
    Chemistry; 2018 Mar; 24(15):3733-3741. PubMed ID: 29388737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Nickel-Catalyzed Hydrogenation Reactions.
    Wondergem CS; Kromwijk JJG; Slagter M; Vrijburg WL; Hensen EJM; Monai M; Vogt C; Weckhuysen BM
    Chemphyschem; 2020 Apr; 21(7):625-632. PubMed ID: 31981395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending Surface-Enhanced Raman Spectroscopy to Liquids Using Shell-Isolated Plasmonic Superstructures.
    Wondergem CS; van Swieten TP; Geitenbeek RG; Erné BH; Weckhuysen BM
    Chemistry; 2019 Dec; 25(69):15772-15778. PubMed ID: 31478273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering.
    Anema JR; Li JF; Yang ZL; Ren B; Tian ZQ
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():129-50. PubMed ID: 21370987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ
    Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells.
    Zdaniauskienė A; Charkova T; Ignatjev I; Melvydas V; Garjonytė R; Matulaitienė I; Talaikis M; Niaura G
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 240():118560. PubMed ID: 32526402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method.
    Patra PP; Kumar GV
    J Phys Chem Lett; 2013 Apr; 4(7):1167-71. PubMed ID: 26282037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Life and pH-Stable SnO
    Fernández-Vidal J; Gómez-Marín AM; Jones LAH; Yen CH; Veal TD; Dhanak VR; Hu CC; Hardwick LJ
    J Phys Chem C Nanomater Interfaces; 2022 Jul; 126(29):12074-12081. PubMed ID: 35928240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.