These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36133665)

  • 1. Continuous gas-phase synthesis of core-shell nanoparticles
    Snellman M; Eom N; Ek M; Messing ME; Deppert K
    Nanoscale Adv; 2021 Jun; 3(11):3041-3052. PubMed ID: 36133665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General Trends in Core-Shell Preferences for Bimetallic Nanoparticles.
    Eom N; Messing ME; Johansson J; Deppert K
    ACS Nano; 2021 May; 15(5):8883-8895. PubMed ID: 33890464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles.
    Ferrando R
    J Phys Condens Matter; 2015 Jan; 27(1):013003. PubMed ID: 25485754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles.
    Grammatikopoulos P; Kioseoglou J; Galea A; Vernieres J; Benelmekki M; Diaz RE; Sowwan M
    Nanoscale; 2016 May; 8(18):9780-90. PubMed ID: 27119383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-value utilization of egg shell to synthesize Silver and Gold-Silver core shell nanoparticles and their application for the degradation of hazardous dyes from aqueous phase-A green approach.
    Sinha T; Ahmaruzzaman M
    J Colloid Interface Sci; 2015 Sep; 453():115-131. PubMed ID: 25978558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursor-Less Coating of Nanoparticles in the Gas Phase.
    Pfeiffer TV; Kedia P; Messing ME; Valvo M; Schmidt-Ott A
    Materials (Basel); 2015 Mar; 8(3):1027-1042. PubMed ID: 28787986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study on structural and atomic evolution between Au and Ni nanoparticles through coalescence.
    Li B; Li J; Su X; Cui Y
    Sci Rep; 2021 Jul; 11(1):15432. PubMed ID: 34326385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles.
    Wagener P; Jakobi J; Rehbock C; Chakravadhanula VS; Thede C; Wiedwald U; Bartsch M; Kienle L; Barcikowski S
    Sci Rep; 2016 Mar; 6():23352. PubMed ID: 27004738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-flight gas phase growth of metal/multi layer graphene core shell nanoparticles with controllable sizes.
    Sengar SK; Mehta BR; Kumar R; Singh V
    Sci Rep; 2013 Oct; 3():2814. PubMed ID: 24100702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis.
    Krishnan G; Verheijen MA; ten Brink GH; Palasantzas G; Kooi BJ
    Nanoscale; 2013 Jun; 5(12):5375-83. PubMed ID: 23652572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles.
    Tchaplyguine M; Andersson T; Zhang Ch; Björneholm O
    J Chem Phys; 2013 Mar; 138(10):104303. PubMed ID: 23514485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.
    Huang R; Shao GF; Wen YH; Sun SG
    Phys Chem Chem Phys; 2014 Nov; 16(41):22754-61. PubMed ID: 25234428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile and robust synthesis process for the fine control of the chemical composition and core-crystallinity of spherical core-shell Au@Ag nanoparticles.
    Lee S; Portalès H; Walls M; Beaunier P; Goubet N; Tremblay B; Margueritat J; Saviot L; Courty A
    Nanotechnology; 2021 Feb; 32(9):095604. PubMed ID: 33096540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles.
    Kamarudheen R; Kumari G; Baldi A
    Nat Commun; 2020 Aug; 11(1):3957. PubMed ID: 32770052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface faceting and compositional evolution of Pd@Au core-shell nanocrystals during in situ annealing.
    Wu Z; Tang M; Li X; Luo S; Yuan W; Zhu B; Zhang H; Yang H; Gao Y; Wang Y
    Phys Chem Chem Phys; 2019 Feb; 21(6):3134-3139. PubMed ID: 30675619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, Transformation, and Utilization of Monodispersed Colloidal Spheres.
    Qiu J; Camargo PHC; Jeong U; Xia Y
    Acc Chem Res; 2019 Dec; 52(12):3475-3487. PubMed ID: 31793763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel copper (Cu) loaded core-shell silica nanoparticles with improved Cu bioavailability: synthesis, characterization and study of antibacterial properties.
    Maniprasad P; Santra S
    J Biomed Nanotechnol; 2012 Aug; 8(4):558-66. PubMed ID: 22852465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.