BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36133689)

  • 1. Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch.
    Wang BX; Xu W; Wu Y; Yang Z; Lai S; Lu L
    Nanoscale Adv; 2022 Mar; 4(5):1359-1367. PubMed ID: 36133689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Quad-Band and Polarization-Insensitive Metamaterial Absorber with a Low Profile Based on Graphene-Assembled Film.
    Jin S; Zu H; Qian W; Luo K; Xiao Y; Song R; Xiong B
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniaturized and Actively Tunable Triple-Band Terahertz Metamaterial Absorber Using an Analogy I-Typed Resonator.
    Wang BX; Xu C; Duan G; Jiang J; Xu W; Yang Z; Wu Y
    Nanoscale Res Lett; 2022 Mar; 17(1):35. PubMed ID: 35291018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-band terahertz superabsorbers based on perforated square-patch metamaterials.
    Wang BX; He Y; Lou P; Zhu H
    Nanoscale Adv; 2021 Jan; 3(2):455-462. PubMed ID: 36131750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves.
    Lu T; Zhang D; Qiu P; Lian J; Jing M; Yu B; Wen J; Zhuang S
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30404174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-Effective Bull's Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation.
    Vafapour Z
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications.
    Xie Q; Dong G; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 May; 13(1):137. PubMed ID: 29740712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin Six-Band Polarization-Insensitive Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator for Terahertz Waves.
    Cheng YZ; Huang ML; Chen HR; Guo ZZ; Mao XS; Gong RZ
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure.
    Wang BX; Wang GZ; Sang T; Wang LL
    Sci Rep; 2017 Jan; 7():41373. PubMed ID: 28120897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high
    Wang D; Xu KD; Luo S; Cui Y; Zhang L; Cui J
    Nanoscale; 2023 Feb; 15(7):3398-3407. PubMed ID: 36722909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple-Band and Ultra-Broadband Switchable Terahertz Meta-Material Absorbers Based on the Hybrid Structures of Vanadium Dioxide and Metallic Patterned Resonators.
    Zou Y; Lin H; Tian G; Zhou H; Zhu H; Xiong H; Wang BX
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable and three-dimensional dual-band metamaterial absorber based on electromagnetically induced transparency with vanadium dioxide.
    Chen M; Yang XX
    Phys Chem Chem Phys; 2023 May; 25(19):13393-13398. PubMed ID: 37158637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-band terahertz absorber based on square ring metamaterial structure.
    Wang D; Xu KD; Luo S; Cui Y; Zhang L; Liao Z; Cui J
    Opt Express; 2023 Feb; 31(4):5940-5950. PubMed ID: 36823863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies.
    Duan G; Schalch J; Zhao X; Zhang J; Averitt RD; Zhang X
    Opt Express; 2018 Feb; 26(3):2242-2251. PubMed ID: 29401764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-band terahertz metamaterial absorber based on Dirac semimetal for a refractive index sensing application.
    Jiang J; Xu W; Wu Y; Duan G; Xu C; Zhao Q; Zhu H; Zhang X; Wang BX
    Appl Opt; 2023 Jun; 62(17):4706-4715. PubMed ID: 37707169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A terahertz polarization insensitive dual band metamaterial absorber.
    Ma Y; Chen Q; Grant J; Saha SC; Khalid A; Cumming DR
    Opt Lett; 2011 Mar; 36(6):945-7. PubMed ID: 21403737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application.
    Wang BX; He Y; Lou P; Xing W
    Nanoscale Adv; 2020 Feb; 2(2):763-769. PubMed ID: 36133238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures.
    Su Z; Yin J; Zhao X
    Opt Express; 2015 Jan; 23(2):1679-90. PubMed ID: 25835924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Sensitive Dual-Band Terahertz Metamaterial Absorber for Biomedical Applications: Simulation and Experiment.
    Abdulkarim YI; Altintas O; Karim AS; Awl HN; Muhammadsharif FF; Alkurt FÖ; Bakir M; Appasani B; Karaaslan M; Dong J
    ACS Omega; 2022 Oct; 7(42):38094-38104. PubMed ID: 36312388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.