These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 36133725)

  • 1. From shaping to functionalization of micro-droplets and particles.
    Song R; Cho S; Shin S; Kim H; Lee J
    Nanoscale Adv; 2021 Jun; 3(12):3395-3416. PubMed ID: 36133725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microparticle formation and its mechanism in single and double emulsion solvent evaporation.
    Rosca ID; Watari F; Uo M
    J Control Release; 2004 Sep; 99(2):271-80. PubMed ID: 15380636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive and active droplet generation with microfluidics: a review.
    Zhu P; Wang L
    Lab Chip; 2016 Dec; 17(1):34-75. PubMed ID: 27841886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles.
    Al-Ali A; Waheed W; Abu-Nada E; Alazzam A
    J Chromatogr A; 2022 Aug; 1676():463268. PubMed ID: 35779391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of droplet-based microfluidic techniques in the preparation of microparticles.
    Naiserová M; Vysloužil J; Kubová K; Holická M; Vetchý D; Mašek J; Mašková E
    Ceska Slov Farm; 2021; 70(5):155–163. PubMed ID: 34875837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of droplet-based microfluidic techniques in the preparation of microparticles.
    Naiserová M; Vysloužil J; Kubová K; Holická M; Vetchý D; Mašek J; Mašková E
    Ceska Slov Farm; 2021; 70(5):155-163. PubMed ID: 35114792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type.
    Bianchi JRO; de la Torre LG; Costa ALR
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Charge-Assisted Microdroplet Generation on a Superhydrophobic Surface.
    Yu F; Sun Q; Wang D; Tan Y; Lin S; Chen L; Fan Y; Guo J; Yang J; Deng X
    Langmuir; 2020 Dec; 36(47):14352-14360. PubMed ID: 33170014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Microdroplet Generation and High-Density Microparticle Arraying Based on Biomimetic Nepenthes Peristome Surfaces.
    Peng Z; Chen Y; Wu T
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47299-47308. PubMed ID: 33032397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet microfluidics for producing functional microparticles.
    Kim JH; Jeon TY; Choi TM; Shim TS; Kim SH; Yang SM
    Langmuir; 2014 Feb; 30(6):1473-88. PubMed ID: 24143936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet-based microfluidics in biomedical applications.
    Amirifar L; Besanjideh M; Nasiri R; Shamloo A; Nasrollahi F; de Barros NR; Davoodi E; Erdem A; Mahmoodi M; Hosseini V; Montazerian H; Jahangiry J; Darabi MA; Haghniaz R; Dokmeci MR; Annabi N; Ahadian S; Khademhosseini A
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34781274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
    Ji XH; Cheng W; Guo F; Liu W; Guo SS; He ZK; Zhao XZ
    Lab Chip; 2011 Aug; 11(15):2561-8. PubMed ID: 21687836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional liquid droplets for analyte sensing and energy harvesting.
    Thakur S; Dasmahapatra AK; Bandyopadhyay D
    Adv Colloid Interface Sci; 2021 Aug; 294():102453. PubMed ID: 34120038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production.
    Kim CM; Kim GM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31635350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose-Based Microparticles for Magnetically Controlled Optical Modulation and Sensing.
    Hausmann MK; Hauser A; Siqueira G; Libanori R; Vehusheia SL; Schuerle S; Zimmermann T; Studart AR
    Small; 2020 Jan; 16(1):e1904251. PubMed ID: 31805220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microparticles controllable accumulation, arrangement, and spatial shaping performed by tapered-fiber-based laser-induced convection flow.
    Zhang Y; Lei J; Zhang Y; Liu Z; Zhang J; Yang X; Yang J; Yuan L
    Sci Rep; 2017 Oct; 7(1):14378. PubMed ID: 29085030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets.
    Muluneh M; Issadore D
    Lab Chip; 2013 Dec; 13(24):4750-4. PubMed ID: 24166156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-droplet microparticle separation using travelling surface acoustic wave.
    Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ
    Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.