These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 36133725)
1. From shaping to functionalization of micro-droplets and particles. Song R; Cho S; Shin S; Kim H; Lee J Nanoscale Adv; 2021 Jun; 3(12):3395-3416. PubMed ID: 36133725 [TBL] [Abstract][Full Text] [Related]
2. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales]. Cui J; Liu L; Li D; Piao X Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011 [TBL] [Abstract][Full Text] [Related]
3. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. Rosca ID; Watari F; Uo M J Control Release; 2004 Sep; 99(2):271-80. PubMed ID: 15380636 [TBL] [Abstract][Full Text] [Related]
4. Passive and active droplet generation with microfluidics: a review. Zhu P; Wang L Lab Chip; 2016 Dec; 17(1):34-75. PubMed ID: 27841886 [TBL] [Abstract][Full Text] [Related]
5. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles. Al-Ali A; Waheed W; Abu-Nada E; Alazzam A J Chromatogr A; 2022 Aug; 1676():463268. PubMed ID: 35779391 [TBL] [Abstract][Full Text] [Related]
6. Use of droplet-based microfluidic techniques in the preparation of microparticles. Naiserová M; Vysloužil J; Kubová K; Holická M; Vetchý D; Mašek J; Mašková E Ceska Slov Farm; 2021; 70(5):155–163. PubMed ID: 34875837 [TBL] [Abstract][Full Text] [Related]
7. Use of droplet-based microfluidic techniques in the preparation of microparticles. Naiserová M; Vysloužil J; Kubová K; Holická M; Vetchý D; Mašek J; Mašková E Ceska Slov Farm; 2021; 70(5):155-163. PubMed ID: 35114792 [TBL] [Abstract][Full Text] [Related]
8. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type. Bianchi JRO; de la Torre LG; Costa ALR Foods; 2023 Sep; 12(18):. PubMed ID: 37761094 [TBL] [Abstract][Full Text] [Related]
9. Surface-Charge-Assisted Microdroplet Generation on a Superhydrophobic Surface. Yu F; Sun Q; Wang D; Tan Y; Lin S; Chen L; Fan Y; Guo J; Yang J; Deng X Langmuir; 2020 Dec; 36(47):14352-14360. PubMed ID: 33170014 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast Microdroplet Generation and High-Density Microparticle Arraying Based on Biomimetic Nepenthes Peristome Surfaces. Peng Z; Chen Y; Wu T ACS Appl Mater Interfaces; 2020 Oct; 12(42):47299-47308. PubMed ID: 33032397 [TBL] [Abstract][Full Text] [Related]
11. Droplet microfluidics for producing functional microparticles. Kim JH; Jeon TY; Choi TM; Shim TS; Kim SH; Yang SM Langmuir; 2014 Feb; 30(6):1473-88. PubMed ID: 24143936 [TBL] [Abstract][Full Text] [Related]
17. Microparticles controllable accumulation, arrangement, and spatial shaping performed by tapered-fiber-based laser-induced convection flow. Zhang Y; Lei J; Zhang Y; Liu Z; Zhang J; Yang X; Yang J; Yuan L Sci Rep; 2017 Oct; 7(1):14378. PubMed ID: 29085030 [TBL] [Abstract][Full Text] [Related]
18. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets. Muluneh M; Issadore D Lab Chip; 2013 Dec; 13(24):4750-4. PubMed ID: 24166156 [TBL] [Abstract][Full Text] [Related]
19. In-droplet microparticle separation using travelling surface acoustic wave. Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101 [TBL] [Abstract][Full Text] [Related]
20. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape. Cho Y; Kim J; Park J; Kim HS; Cho Y Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]